

Kaohsiung Opto-Electronics Inc.

FOR MESSRS :	DATE : <u>Jul. 8th ,201</u> 3
--------------	--

CUSTOMER'S ACCEPTANCE SPECIFICATIONS

TX23D200VM0BAA

Contents

No.	ITEM	SHEET No.	PAGE
1	COVER	7B64PS 2701-TX23D200VM0BAA-1	1-1/1
2	RECORD OF REVISION	7B64PS 2702-TX23D200VM0BAA-1	2-1/1
3	GENERAL DATA	7B64PS 2703-TX23D200VM0BAA-1	3-1/1
4	ABSOLUTE MAXIMUM RATINGS	7B64PS 2704-TX23D200VM0BAA-1	4-1/1
5	ELECTRICAL CHARACTERISTICS	7B64PS 2705-TX23D200VM0BAA-1	5-1/2~2/2
6	OPTICAL CHARACTERISTICS	7B64PS 2706-TX23D200VM0BAA-1	6-1/2~2/2
7	BLOCK DIAGRAME	7B64PS 2707-TX23D200VM0BAA-1	7-1/1
8	RELIABILITY TESTS	7B64PS 2708-TX23D200VM0BAA-1	8-1/1
9	LCD INTERFACE	7B64PS 2709-TX23D200VM0BAA-1	9-1/9~9/9
10	OUTLINE DIMENSIONS	7B64PS 2710-TX23D200VM0BAA-1	10-1/2~2/2
11	APPEARANCE STANDARD	7B64PS 2711-TX23D200VM0BAA-1	11-1/3~3/3
12	PRECAUTIONS	7B64PS 2712-TX23D200VM0BAA-1	12-1/2~2/2
13	DESIGNATION OF LOT MARK	7B64PS 2713-TX23D200VM0BAA-1	13-1/1

ACCEPTED BY:	PROPOSED BY: (2	Lenker

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2701-TX23D200VM0BAA-1 PAGE 1-1/1

2. RECORD OF REVISION

DATE	SHEET No.	SUMMARY
VAIE	SHEET INO.	SUIVIINART
	PPTO-ELECTRONICS	SINC. SHEET 7B64PS 2702-TX23D200VM0BAA-1 PAGE 2-

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2702-TX23D200VM0BAA-1

PAGE

2-1/1

3. GENERAL DATA

3.1 DISPLAY FEATURES

This module is a 9" WVGA of 16:9 format of amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R(red), G(green), B(blue) sequentially .This display is RoHS compliant , and COG (chip on glass) technology and LED backlight are applied on this display.

Part Name	TX23D200VM0BAA			
Module Dimensions	218.0(W) mm x 135.0(H) mm x 11.15 (D) mm			
LCD Active Area	196.8(W) mm x 118.08(H) mm			
Pixel Pitch	0.246(W) mm x 0.246(H) mm			
Resolution	800 x 3(RGB)(W) x 480(H) dots			
Color Pixel Arrangement	R, G, B Vertical stripe			
LCD Type	Transmissive Color TFT; Normally Black			
Display Type	Active Matrix			
Number of Colors	16.7M Colors(6-bit + FRC)			
Backlight	7 LEDs parallel x 3 serial (21 LEDs in total)			
Weight	330g (typ.)			
Interface	1ch-LVDS/Receiver ; 20 pins			
Power Supply Voltage	3.3V for LCD; 12V for Backlight			
Power Consumption	1.4 W for LCD ;7.0W for backlight			
Viewing Direction	Super Wide Version (In Plane Switching)			

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2703-TX23D200VM0BAA-1

PAGE

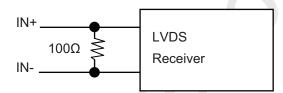
4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	V_{DD}	-0.3	4.0	V	-
Input Voltage of Logic	V_{l}	-0.3	V _{DD} +0.3	V	Note 1
Operating Temperature	T_{op}	-30	80	°C	Note 2
Storage Temperature	T_{st}	-40	90	°C	Note 2
Backlight Input Voltage	V_{LED}	-	15	V	-

- Note 1: The rating is defined for the signal voltages of the interface such as DCLK, DE, DIM and RGB data bus.
- Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:
 - Background color, contrast and response time would be different in temperatures other than $25\,^{\circ}\mathrm{C}\,.$
 - Operating under high temperature will shorten LED lifetime.

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2704-TX23D200VM0BAA-1 PAGE 4-1/1

5. ELECTRICAL CHARACTERISTICS


5.1 LCD CHARACTERISTICS

 $T_a = 25 \, ^{\circ}C, \, \, \mathrm{Vss} = 0\mathrm{V}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
Power Supply Voltage	V_{DD}	-	3.0	3.3	3.6	V	-
Differential Input Voltage for LVDS	V	"H" level	-	-	+100	\/	Nata 4
Receiver Threshold	Vı	"L" level	-100	-	1	mV	Note 1
DPS,FRC,AMODE	V	"H" level	$0.7V_{DD}$	-	V_{DD}		CMOS
Signal Input Voltage	Vı	"L" level	0	-	$0.3V_{DD}$	V	LEVEL
Power Supply Current	I _{DD}	V _{DD} -V _{SS} =3.3V	-	430	560	mA	Note 2,3
Vsync Frequency	f_{v}	-	1	60	75	Hz	Note 4
Hsync Frequency	$f_{\scriptscriptstyle H}$	-	-	31.3	39.4	KHz	Note 4
DCLK Frequency	$f_{\it CLK}$	-	-	33.3	35	MHz	Note 4

Note 1: $V_{CM}=V_{DD}$ / 2V

 V_{CM} is common mode voltage of LVDS transmitter / receiver .The input terminal of LVDS transmitter is terminated with 100 Ω .

Note 2: An all white check pattern is used when measuring I_{DD} . f_{v} is set to 60 Hz

Note 3: 1.0A fuse is applied in the module for I_{DD}. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred.

Note 4: For LVDS Transmitter Input

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO.	7B64PS 2705-TX23D200VM0BAA-1	PAGE	5-1/2	
---	------------------------------	------	-------	--

5.2 BACKLIGHT CHARACTERISTICS

 $T_a = 25 \, ^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks
LED Input Voltage	V_{LED}	-	11.5	12.0	12.5	V	Note1
LED Forward Current		0V; 0% duty	540	580	620	Note 0	
(Dim Control)	I _{LED}	3.3VDC; 100% Duty	15	30	45	mA Note 2	
LED lifetime	-	580 mA	-	70K	-	hrs	Note 3

- Note 1: As Fig. 5.1 shown, LED current is constant, 580 mA, controlled by the LED driver when applying $12V\ V_{LED.}$
- Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is 1K ~ 10K Hz with 3.3V amplitude.
- Note 3: The estimated lifetime is specified as the time to reduce 50% brightness by applying 580 mA at 25° C.

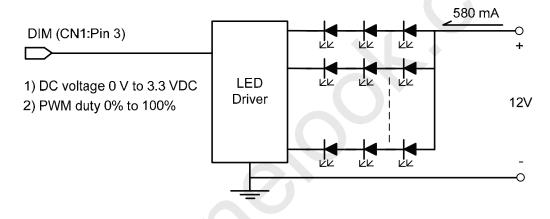


Fig. 5.1

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2705-TX23D200VM0BAA-1

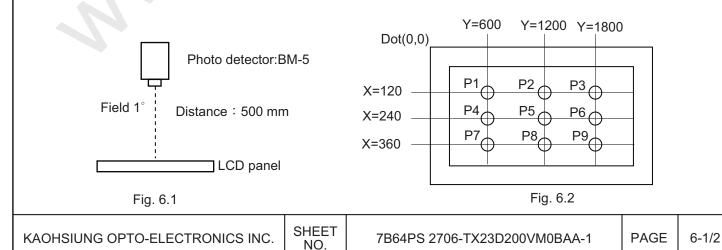
PAGE

5-2/2

6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 15 minutes.
- The ambient temperature is 25 $^{\circ}\mathrm{C}$.
- In the dark room around 500~1000 lx, the equipment has been set for the measurements as shown in Fig 6.1.

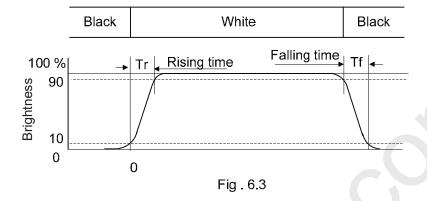

						$T_a = 25 ^{\circ}C$	$f_{v} = 60 \text{ Hz},$	$V_{DD} = 3.3V$	
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remarks	
Brightness of White		-		400	500	-	cd/m ²	Note 1	
Brightness U	niformity	-	$\phi = 0^{\circ}, \theta = 0^{\circ},$	75	-	-	%	Note 2	
Contrast	Ratio	CR	I _{LED} = 580mA	500	800	-		Note 3	
Response (Rising + Fi		Tr + Tf	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	40	-	ms	Note 4	
NTSC R	atio	-	$\phi = 0^{\circ}, \theta = 0^{\circ}$	-	50	-	%	-	
		θ x	φ = 0°, CR ≥ 10	-	85				
\ \(\tau_{1} \)	I .	$\theta x'$	φ = 180°, CR ≥ 10	-	85	~	D	Note 5	
Viewing A	Viewing Angle		φ = 90°, CR ≥ 10	-	85	_	Degree	Note 5	
		θ y'	$\phi = 270^{\circ}, \text{CR} \ge 10$	- (85	-			
	5 .	Х		0.56	0.61	0.66			
	Red	Y		0.28	0.33	0.38]		
		Х		0.27	0.32	0.37			
Color	Green	Y		0.50	0.55	0.60	-		
Chromaticity	Dive	Х	$\phi = 0^{\circ}, \theta = 0^{\circ}$	0.10	0.15	0.20		Note 6	
	Blue	Y		0.07	0.12	0.17			
	\\/\b:t-	Х		0.27	0.32	0.37			
	White	Υ		0.26	0.31	0.36			

Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value.

Note 2: The brightness uniformity is calculated by the equation as below:

Brightness uniformity =
$$\frac{\text{Min. Brightness}}{\text{Max. Brightness}} \times 100\%$$

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.



Global LCD Panel Exchange Center

Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation:

Brightness of White Brightness of Black

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from 10% brightness to 90% brightness when the data is from black to white. Oppositely, Falling time is the period from 90% brightness rising to 10% brightness.

Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle ϕ is used to represent viewing directions, for instance, $\phi = 270^{\circ}$ means 6 o'clock, and $\phi = 0^{\circ}$ means 3 o'clock. Moreover, angle θ is used to represent viewing angles from axis Z toward plane XY.

The display is super wide viewing angle version; 85° viewing angle can be obtained from each viewing direction.

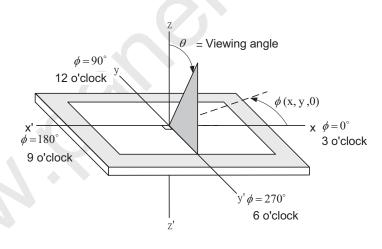
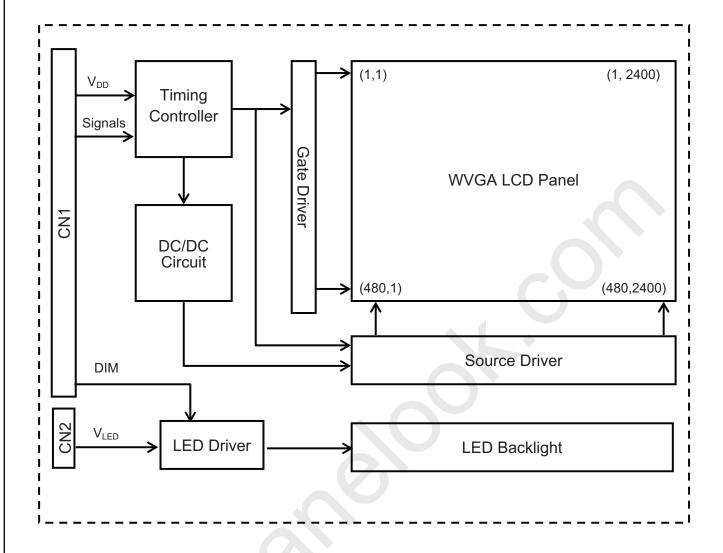


Fig 6.4


Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2706-TX23D200VM0BAA-1	PAGE	6-2/2	
---------------------------------	--------------	------------------------------	------	-------	--

②

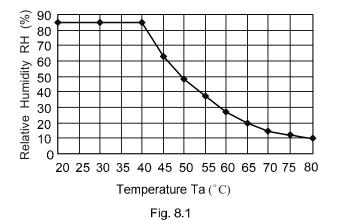
7 BLOCK DIAGRAM

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2707-TX23D200VM0BAA-1

PAGE


7-1/1

8. RELIABILITY TESTS

Test Item	Condition				
High Temperature	1) Operating 2) 80 °C		500 hrs		
Low Temperature	1) Operating 2) -30 °C		500 hrs		
High Temperature	1) Storage 2) 90 °C		500 hrs		
Low Temperature	1) Storage 2) -40 °C		500 hrs		
Heat Cycle	1) Operating 2) -30 °C ~80 °C	3) 3hrs~1hr~3hrs	500 hrs		
Thermal Shock	1) Non-Operating 2) -35 °C ↔ 85 °C	3) 0.5 hr ↔ 0.5 hr	500 hrs		
High Temperature & Humidity	1) Operating 2) 40 °C & 85%RH	3) Without condensation (Note3)	500 hrs		
Vibration	1) Non-Operating 2) 10~200 Hz	3) 5G 4) X, Y, and Z directions	1 hr for each direction		
Mechanical Shock	1) Non-Operating 2) 10 ms	3) 80G 4) \pm X, \pm Y and \pm Z directions	Once for each direction		
ESD	, ,				
Restart Test	1) Test period 0.5S(c	on)→0.5S(off)→0.5S(on) for 5 times	Operating for 1hr @ 80°C		
Nesiall lest	2) Repeat 1) every 5	2) Repeat 1) every 5 min. later for 5 times			

- Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.
- Note 2: The display is not guaranteed for use in corrosive gas environments.
- Note 3: Under the condition of high temperature & humidity, if the temperature is higher than $40\,^{\circ}\text{C}$, the humidity needs to be reduced as Fig. 8.1 shown.
- Note 4: All pins of LCD interface (CN1) have been tested by ± 100 V contact discharge of ESD under non-operating condition.

 SHEET	

9.1 INTERFACE PIN CONNECTIONS

The display interface connector (CN1) is FI-SEB20P-HF13E made by JAE and more details of the connector are shown in the section of outline dimension. Pin assignment of LCD interface is as below:

Pin No.	Symbol	Description	Remarks	
1	V_{DD}	Davier Cumply (from 1.2.2)()	Note 4	
2	V_{DD}	Power Supply (typ.+3.3V)	Note 1	
3	DIM	Backlight diming	Note 4	
4	V_{SS}	GND (0V)	Note 2	
5	INO-	Divel Date	Note 2	
6	IN0+	Pixel Data	Note 3	
7	V _{SS}	GND (0V)	Note 2	
8	IN1-	Pixel Data	Note 3	
9	IN1+	Pixel Data	NOTE 3	
10	V _{SS}	GND (0V)	Note 2	
11	IN2-	Pixel Data	Note 3	
12	IN2+	Pixel Data	Note 3	
13	V_{SS}	GND (0V)	Note 2	
14	CLK IN-	Clock	Note 3	
15	CLK IN+	Clock	Note 3	
16	V _{SS}	GND (0V)	Note 2	
17	IN3-	Pivel Date	Note 2	
18	IN3+	Pixel Data	Note 3	
19	V _{SS}	GND (0V)	Note 2	
20	AMODE	L: 8bit (default) ,.H : 8bit / 6bit	-	

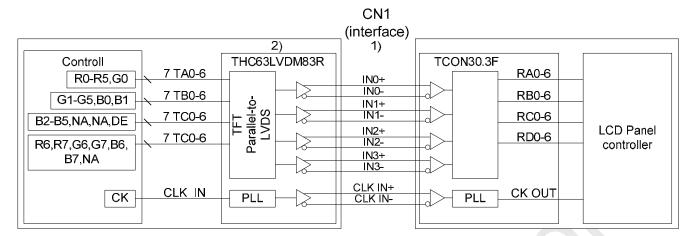
Note 1: All V_{DD} pins should be connected to +3.3V.

Note 2: All V_{SS} pins should be connected to GND(0V),Metal bezel is connected internally to V_{SS} .

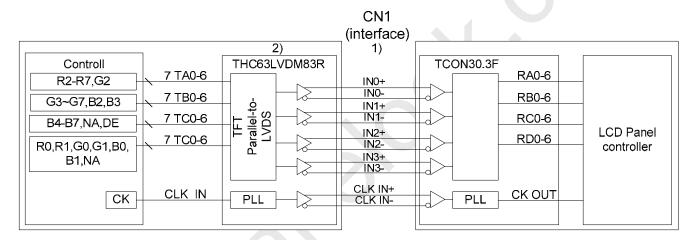
Note 3: In n- and n+ (n=0,1,2,3), CLK IN- and CLK IN+ should be wired by twist-pairs or side by side FPC patterns, respectively.

Note 4: Normal brightness: 0V or 0% PWM duty; Brightness control: 0V to 3.3V DC or 0% to 100% PWM duty.

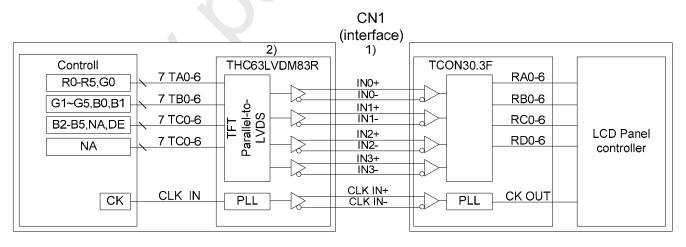
The backlight interface connector (CN2) is SM08B-SRSS-TB made by JST, and pin assignment of backlight is as below:


Pin No.	Signal	Function
1~3	V _{LED} +	Power Supply for LED(12V)
4~5	NC	No Connection
6~8	V _{LED} -	GND

KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2709-TX23D200VM0BAA-1	PAGE	9-1/9
---------------------------------	--------------	------------------------------	------	-------


9.2 LVDS INTERFACE

1) 8Bit Mode (AMODE = LOW)



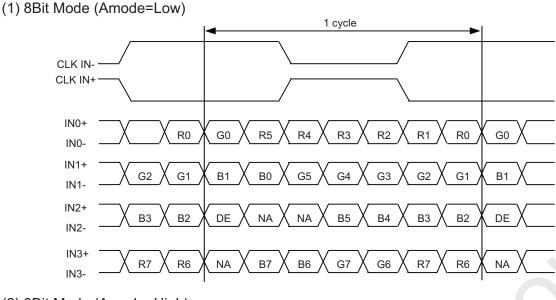
2) 8Bit / 6Bit Mode(AMODE = HIGH)

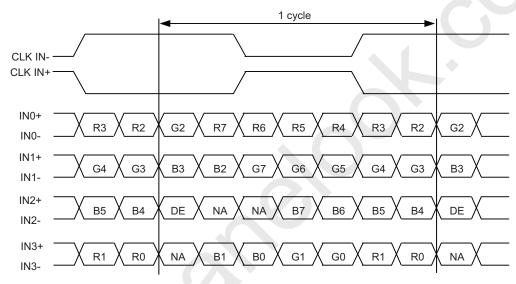
① 8Bit Mode

2 6Bit Mode

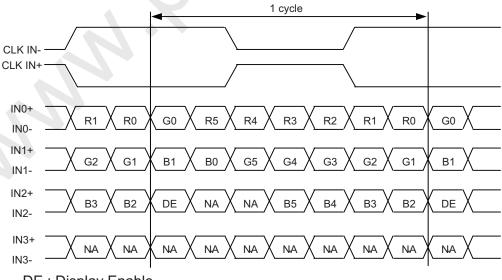
Note 1: 100Ω impedance of LVDS cable is recommended for best optical performance.

Note 2: Transmitter Made by Thine : THC63LVDM83R or equivalent.


KAOHSIUNG OPTO-ELECTRONICS INC.	SHEET NO.	7B64PS 2709-TX23D200VM0BAA-1	PAGE	9-2/9	
---------------------------------	--------------	------------------------------	------	-------	--


9.3 DATA MAPPING

Tra	ansmitter	8Bit Mode	8Bit Mode	6Bit Mode		
Pin No.	Din nama		AMODE			
PIII NO.	Pin name	LOW	HIC	ЭΗ		
51	TA0	R0(LSB)	R2	R0(LSB)		
52	TA1	R1	R3	R1		
54	TA2	R2	R4	R2		
55	TA3	R3	R5	R3		
56	TA4	R4	R6	R4		
3	TA5	R5	R7(MSB)	R5(MSB)		
4	TA6	G0(LSB)	G2	G0(LSB)		
6	TB0	G1	G3	G1		
7	TB1	G2	G4	G2		
11	TB2	G3	G5	G3		
12	TB3	G4	G6	G4		
14	TB4	G5	G7(MSB)	G5(MSB)		
15	TB5	B0(LSB)	B2	B0(LSB)		
19	TB6	B1	В3	B1		
20	TC0	B2	B4	B2		
22	TC1	TC1	TC1	В3	B5	В3
23	TC2	B4	B6	B4		
24	TC3	B5	B7(MSB)	B5(MSB)		
27	TC4	(NA)	(NA)	(NA)		
28	TC5	(NA)	(NA)	(NA)		
30	TC6	DE	DE	DE		
50	TD0	R6	R0(LSB)	(NA)		
2	TD1	R7(MSB)	R1	(NA)		
8	TD2	G6	G0(LSB)	(NA)		
10	TD3	G7(MSB)	G1	(NA)		
16	TD4	В6	B0(LSB)	(NA)		
18	TD5	B7(MSB)	B1	(NA)		
25	TD6	(NA)	(NA)	(NA)		


SHEET NO. KAOHSIUNG OPTO-ELECTRONICS INC. PAGE 7B64PS 2709-TX23D200VM0BAA-1 9-3/9

(2) 8Bit Mode (Amode=High)

(3) 6Bit Mode (Amode=High)

DE : Display Enable NA : Not Available

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2709-TX23D200VM0BAA-1

PAGE

9-4/9

9.4 DATA INPUT for DISPLAY COLOR

(8BIT MODE)

				ı	Red	Data	a					C	Green	n Dat	а						Blue	Data	ı		
Inp	ut color	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	В3	B2	B1	В0
		MSB							LSB	MSB							LSB	MSB							LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	: (:		:	:	:	:	:	:	:	:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:/	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	Ė	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.

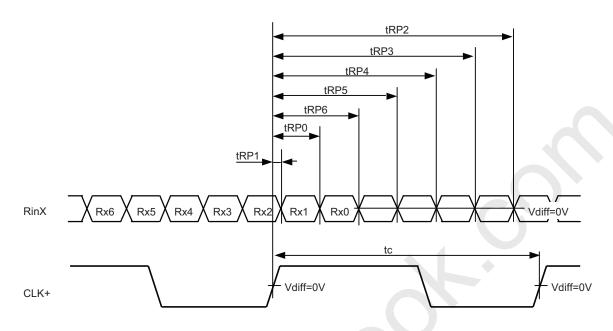
Note 2: Data Signal: 1: High, 0: Low

KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2709-TX23D200VM0BAA-1 PAGE 9-5/9

(6BIT MODE)

Input color		Red Data					Green Data					Blue Data							
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В5	В4	ВЗ	B2	В1	В0
		MSB	•			L	.SB	MSB				L	SB	MSB					LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:
	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note 1: Definition of gray scale : Color(n) Number in parenthesis indicates gray scale level. Larger number corresponds to brighter level.


Note 2: Data Signal : 1 : High, 0 : Low

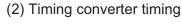
KAOHSIUNG OPTO-ELECTRONICS INC. SHEET NO. 7B64PS 2709-TX23D200VM0BAA-1 PAGE 9-6/9

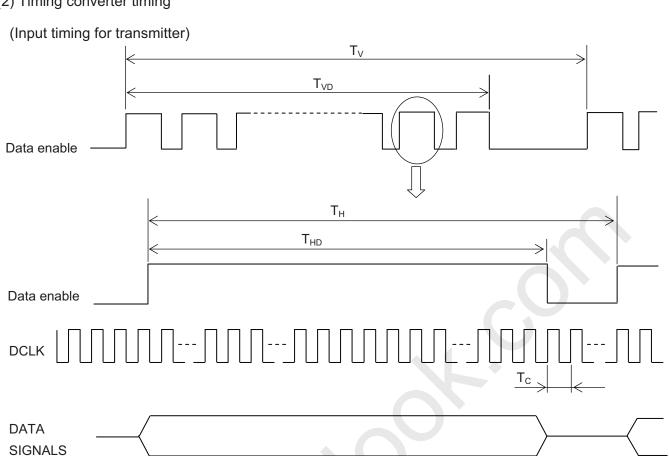
9.5 INTERFACE TIMING

(1) LVDS Receiver Timing

(Interface of TFT module)

RinX=(RinX+)-(RinX-)	(X=0,1,2)
----------------------	-----------


	Item	Symbol	Min.	Ту	p.	Max.	Unit						
DCLK	FREQUENCY	1/tc	25.0	28.0 1) 33.3 2)		28.0 1) 33.3 2)		28.0 1) 33.3 2)		28.0 1) 33.3 2)		35.0	MHz
RinX	0 data position	t _{RP0}	1/7t _{CLK} -0.65	1/7*	t _{CLK}	1/7t _{CLK} +0.65							
(X=0,1,2)	1st data position	t _{RP1}	-0.65	0)	-0.65							
	2nd data	t _{RP2}	6/7t _{CLK} -0.65	6/7*t _{CLK}		6/7t _{CLK} +0.65							
	position												
	3rd data position	t _{RP3}	5/7t _{CLK} -0.65	5/7*	t _{CLK}	5/7t _{CLK} +0.65	ns						
	4th data position	t _{RP4}	4/7t _{CLK} -0.65	4/7*t _{CLK}		4/7t _{CLK} +0.65							
	5th data position	t _{RP5}	3/7t _{CLK} -0.65	3/7*t _{CLK}		3/7t _{CLK} +0.65							
	6th data position	t _{RP6}	2/7t _{CLK} -0.65	2/7*	t _{CLK}	2/7t _{CLK} +0.65							


Note 1: fv=50Hz

Note 2: fv=60Hz

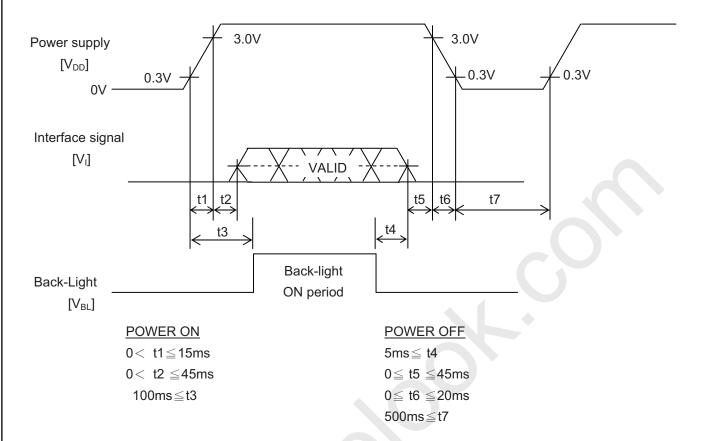
KAOHSIUNG OPTO-ELECTRONICS INC.	NO

The timings except mentioned above are referred to the specifications of your transmitter.

	Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
DCLK	Cycle time	T _C	28.6	30.0	40.0	ns	
	Duty	D	0.45	0.5	0.55	-	
	Horizontal period	T _H	845	1056	1500	T _C	
Data	Horizontal width-Active	T _{HD}	800	800	800	T _C	
Enable	Vertical period	T _V	483	525	640	T _H	
	Vertical width-Active	T_VD	480	480	480	T _H	
	Frame frequency	f _V	42	60	75	H _Z	

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.


7B64PS 2709-TX23D200VM0BAA-1

PAGE

(3) Timing between interface signal and power supply

Power Supply, Input Signal and Backlight Voltage should comply with the following sequence.

- Note 1: In order to prevent electronic parts from destruction caused by latch-up, please input signal after Power Supply Voltage ON. In addition, please turn off signals before power supply voltage OFF.
- Note 2: In order to prevent from function error due to residual charge, please reenter power supply voltage after time stipulated with t7.
- Note 3: Please turn on Backlight after signals fix and turn off before signals down, otherwise noise appears in the display. The noise cause no problem with display performance in case of timing sequence comply with the spec.

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2709-TX23D200VM0BAA-1

PAGE

9-9/9

11. APPEARANCE STANDARD

The appearance inspection is performed in a dark room around 1200 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm.
- The viewing zone is defined with angle θ shown in Fig. 11.1 The inspection should be performed within 45° when display is shut down. The inspection should be performed within 5° when display is power on.

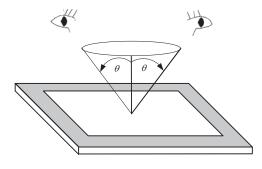


Fig. 11.1

11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 3 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; C zone is the area between B zone and metal frame.

In terms of housing design, B zone is the recommended window area customers' housing should be located in.

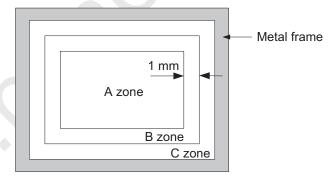


Fig. 11.2

11.2 LCD APPEARANCE SPECIFICATION

The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.

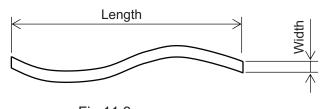
	Item			Max. acceptable		Remarks
No				number	Unit	
				A-ZONE		
1	Dot defect	Sparkle mode	1-dot	2	pcs	Note 1,2,4
			2-dots	1	- Units	Note 1,2,5
			3-dots	0		
			Total	2	Units	Note 1,2
		Black mode	1-dot	3	pcs	Note 1,3,4
			2-dots	2	Units	Note 1,3,5
			3-dots	0		
			Total	3	Units	Note 1,3
		Total	Density	1	Units/∮80mm	Note 1,2,3,6
			Total	3	Units	Note 1
2		Line defect		Serious one is	_	_
3	Uneven brightness			not allowed		
	Stain inclusion	W≦0.02	L : Ignore	Ignore	pcs	Note 7
	Line shape	W≦0.03	L≦2.0	10		
	W : width (mm)		L>2.0	0		
4	L: length (mm)	W≦0.06	L≦1.0	10		
		VV <u>≦</u> U.00	L>1.0	0		
		W>0.06	- 🔷	(See dot shape)	7	
5	Stain inclusion	D≦0.22		Ignore	pcs	Note 7
	Dot shape	D≦0.33		5		
	D : ave. dia (mm)	D>0.33		0		
6	Scratch on polarizer	W≦0.01	L : Ignore	Ignore		
	Line shape	W≦0.02	L≦40	10	pcs	Note 8
	W : width (mm)		L>40	0		
	L : length (mm)	W≦0.04	L≦20	10		
			L>20	0		
	Scratch on polarizer	D≦0.2		Ignore		
7	Dot shape	D≦0.2 D≦0.4		10	pcs	Note 8
/						
1	└ D : ave. dia (mm)┘	D>0.4		0		

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2711-TX23D200VM0BAA-1

PAGE


11-2/3

Non-operating inspection

Global LCD Panel Exchange Center

No	o ITEM		Max. acceptable number	Unit	Remarks
TIEW!			A-zone		
8	Bubbles, peeling In polarizer	D≦0.3	Ignore	pcs	Note 8
		D≦0.5	10		
	[D:ave.dia(mm)]	D≦1.0	5		
		D>1.0	0		
9	Wrinkles on polarizer		Serious one is not allowed	-	-

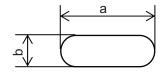


Fig 11.4

Average diameter =

Fig 11.3

Note 1: Dot defect : defect area > 1/2 dot

Note 2: Sparkle mode: brightness of dot is more than 30% at black raster.

Note 3: Black mode: brightness of dot is less than 70% at white raster.

Note 4: 1 dot: defect dot is isolated, not attached to other defect dot.

Note 5: N dots: N defect dots are consecutive. (N means the number of defects dots)

Note 6: Density : number of defect dots inside 20mm φ.

Note 7: Those stains which can be wiped out easily are acceptable.

Note 8: Polarizer area inside of B-zone is not applied.

12. PRECAUTIONS

12.1 PRECAUTIONS of ESD

- 1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
- 2) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

12.2 PRECAUTIONS of HANDLING

- 1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by sharp tools harder than 3H, especially touch panel, metal frame and polarizer.
- 2) Please do not pile the displays in order to avoid any scars leaving on the display. In order to avoid any injuries, please pay more attention for the edges of glasses and metal frame, and wear finger cots to protect yourself and the display before working on it.
- 3) Touching the display area or the terminal pins with bare hand is prohibited. This is because it will stain the display area and cause poor insulation between terminal pins, and might affect display's electrical characteristics furthermore.
- 4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
- 5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
- 6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanently damages.
- 7) Maximum pressure to the surface of the display must be less than $1,96 \times 10^4$ Pa. If the area of adding pressure is less than $1\,\text{cm}^2$, the maximum pressure must be less than 1.96×10^4 Pa.

12.3 PRECAUTIONS OF OPERATING

- 1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
- 2) When the display is operating at significant low temperature, the response time will be slower than it at 25 °C . In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
- 3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
- 4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than ± 100 mV.

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2712-TX23D200VM0BAA-1

PAGE

12.4 PRECAUTIONS of STORAGE

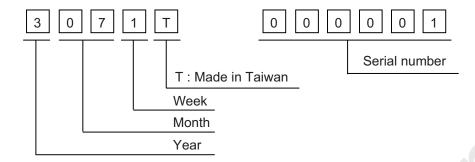
If the displays are going to be stored for years, please be aware the following notices.

- 1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
- 2) The recommended long term storage temperature is between $10\,\mathrm{C}^\circ$ ~35 C° and 55%~75% humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
- 3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it.
- 4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

KAOHSIUNG OPTO-ELECTRONICS INC.

SHEET NO.

7B64PS 2712-TX23D200VM0BAA-1


PAGE

12-2/2

13. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.

2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

Year	Mark
2013	3
2014	4
2015	5
2016	6
2017	7

Month	Mark	Month	Mark
1	01	7	07
2	02	8	08
3	03	9	09
4	04	10	10
5	05	11	11
6 06		12	12

Week (Days)	Mark
1~7	1
8~14	2
15~21	3
22~28	4
29~31	5

- 3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z.
- 4) The location of the lot mark is on the back of the display shown in Fig. 13.1.

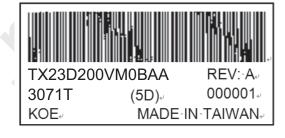


Fig 13.1