

TFT COLOR LCD MODULE NL10276AC28-02

36 cm (14.1 inches), $1,024 \times 768$ pixels, Full-color, Multi-scan function, Built-in backlight with inverter Ultra wide viewing angle

DESCRIPTION

NL10276AC28-02 is a TFT (thin film transistor) active matrix color liquid crystal display (LCD) comprising amorphous silicon TFT attached to each signal electrode, a driving circuit and a backlight. NL10276AC28-02 has a built-in backlight with an inverter.

The 36cm (14.1 inches) diagonal display area contains $1,024 \times 768$ pixels and can display full-color (more than 16 million colors simultaneously). Furthermore, it has also wide viewing angle and multi-scan function. Therefore, NEC calls this modules Super Fine TFT.

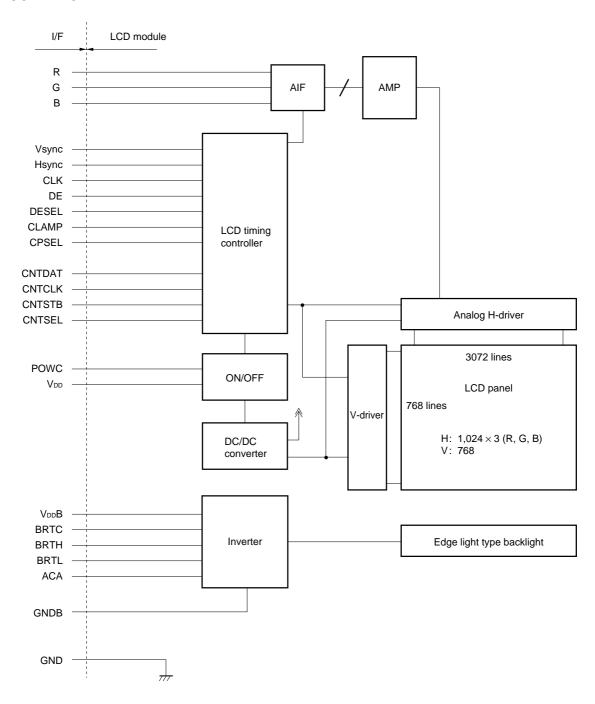
FEATURES

- · Ultra wide viewing angle
- · High luminance and Low reflection
- · Analog RGB signals
- Multi-scan function: e.g., XGA, SVGA, VGA, VGA-TEXT, PC-9801, MAC
- Built-in edge-light type backlight (Four lamps into two lamp holders, Inverter)
- Lamp holder replaceable (Part No.: 141LHS-2)

APPLICATIONS

- · Engineering workstation(EWS), Desk-top type of PC
- · Display terminals for control system
- · Monitors for process controller

The information in this document is subject to change without notice.


STRUCTURE AND FUNCTIONS

A color TFT (thin film transistor) LCD module is comprised of a TFT liquid crystal panel structure, LSIs for driving the TFT array, and a backlight assembly. The TFT panel structure is created by sandwiching liquid crystal material in the narrow gap between a TFT array glass substrate and a color filter glass substrate. After the driver LSIs are connected to the panel, the backlight assembly is attached to the backside of the panel.

RGB (red, green, blue) data signals from a source system is modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn addresses the individual TFT cells.

Acting as an electro-optical switch, each TFT cell regulates light transmission from the backlight assembly when activated by the data source. By regulating the amount of light passing through the array of red, green, and blue dots, color images are created with clarity.

BLOCK DIAGRAM

Remark Frame is not connected to GND and GNDB.

OUTLINE OF CHARACTERISTICS (at room temperature)

Display area 285.696 (H) × 214.272 (V) mm

Drive system a-Si TFT active matrix

Display colors Full-color Number of pixels $1,024 \times 768$

Pixel arrangement RGB vertical stripe Pixel pitch 0.279 (H) \times 0.279 (V) mm

Module size $330.0 \text{ (H)} \times 255.0 \text{ (V)} \times 25.0 \text{ (TYP.) (D)} \text{ mm}$

 Weight
 1,495 g (TYP.)

 Contrast ratio
 150 : 1 (TYP.)

Viewing angle (more than the contrast ratio of 10:1)

• Horizontal: 80° (TYP., left side, right side)

• Vertical: 80° (TYP., up side), 70° (TYP., down side)

Designed viewing direction Optimum grayscale (γ = 2.2): perpendicular

Color gamut 40% (TYP., center, To NTSC) Response time 35 ms (TYP.), black to white

Luminance 200 cd/m² (TYP.)

Signal system Analog RGB signals, Synchronous signals (Hsync, Vsync), Dot clock (CLK)

Supply voltages 12 V, 12 V (Logic/LCD driving, Backlight)

Backlight Edge light type: Four cold cathode fluorescent lamps with an inverter

Power consumption 22 W (TYP.)

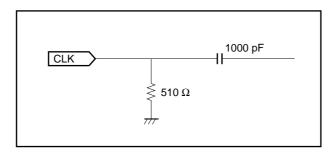
GENERAL SPECIFICATIONS

Item	Specification	Unit
Module size	$330.0 \pm 0.5~(\text{H}) \times 255.0 \pm 0.5~(\text{V}) \times 26.0~(\text{MAX.})~(\text{D})$	mm
Display area	285.696 (H) × 214.272 (V)	mm
Number of dots	1,024 × 3 (H) × 768 (V)	dot
Number of pixels	1,024 (H) × 768 (V)	pixel
Dot pitch	0.093 (H) × 0.279 (V)	mm
Pixel pitch	0.279 (H) × 0.279 (V)	mm
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe	-
Display colors	full-color	color
Weight	1,550 (MAX.)	g

ABSOLUTE MAXIMUM RATINGS

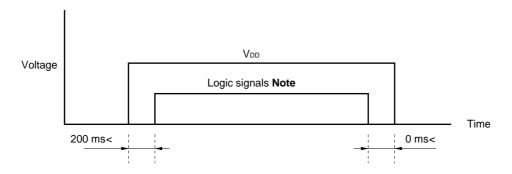
Parameter	Symbol	Ratings	Unit	Remarks	
Supply voltage	VDDB	-0.3 to +14	V	Ta = 25°C	
	V _{DD}	-0.3 to +14	V		
Logic input voltage	V _{IN1}	-0.3 to +5.5	V	T _a = 25°C	
R,G,B input voltage	V _{IN2}	-6.0 to +6.0	V	V _{DD} = 12 V	
CLK input voltage	VIN3	-7.0 to +7.0	٧		
BRTL input voltage	V _{IN4}	-0.3 to +1.5	V		
Storage temp.	Тѕт	-20 to + 60	°C		
Operating temp.	Тор	0 to 50	°C	Module surface Note	
Humidity	-	≤ 95% relative humidity	-	$T_a \le 40^{\circ}C$ No condensation	
	_	≤ 85% relative humidity			
	_	≤ (T _a = 50°C, 85% relative humidity) Absolute humidity	-	- Ta > 50°C	

Note Measured at the display area


ELECTRICAL CHARACTERISTICS

Ta = 25°C

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks	
Supply voltage	VDDB	11.4	12.0	12.6	V	for backlight	
	V _{DD}	11.4	12.0	12.6	V	for logic and LCD driving	
Logic input Low voltage	VIL	0	-	0.8	V	TTL level	
Logic input High voltage	VIH	2.2	-	5.25	V		
CLK input voltage	VICLK	0.6	ı	1.0	Vp-p	for CLK	
CLK DC input level	VIDCCLK	-4.5	-	+4.5	V		
Logic input Low current 1	IIL1	-1,080	-	-	μΑ	for CNTSEL, CPSEL and POWC	
Logic input High current 1	I _{IH1}	-	-	10	μΑ		
Logic input Low current 2	I _{IL2}	-260	-	-	μΑ	for BRTC	
Logic input High current 2	I _{IH2}	-	-	820	μΑ		
Logic input Low current 3	Іііз	-500	ı	-	μΑ	for ACA	
Logic input High current 3	Іінз	-	-	340	μΑ		
Logic input Low current 4	IIL4	-10	-	-	μΑ	for except above terminals	
Logic input High current 4	Іін4	-	-	130	μΑ		
Maximum amplitude (white-black)	Virgb	0 (black)	I	0.7 (white)	Vp-p	RGB input	
DC input level (black)	VIDCRGB	-3.5	-	+3.5	V		
Supply current	ІльВр	-	-	4,000	mA	V _{DD} B = 12.0 V	
	ТІррВр	-	-	4	ms		
Supply current Note	IDD	-	530	800	mA	V _{DD} = 12.0 V	
	IDDB	-	1,300	1,600	mA	V _{DD} B = 12.0 V (MAX. luminance)	


Note Checkered flag pattern

CLK input equivalent circuit

SUPPLY VOLTAGE SEQUENCE

Caution Wrong power sequence may damage to the module.

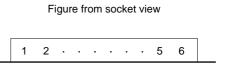
Note Synchronous signal, Control signals

- (1) Logic signals (synchronous signals and control signals) should be "0" voltage (V), when VDD is not input. If higher than 0.3 V is input to signal lines, the internal circuit will be damaged.
- (2) LCD module will shut down the power supply of driving voltage to LCD panel internally, when one of CLK, Hsync, Vsync, DE (at DE mode) is not input more than 90 ms typically. As the display data are unstable in this period, the display is disordered. But the backlight works correctly event this period. So the backlight ON/OFF should be controlled by BRTC signal.
- (3) The ON/OFF (BRTC signal) should be controlled while logic signals are supplied. The backlight power supply (VDDB) is not related to the power supply sequence. However, unstable data will be displayed when the backlight power is turned ON/OFF with no logic signals.
- (4) Keep POWC signal Low more than 200 ms after the power supply (VDD) is input, if POWC signal is controlled.
- (5) Analog RGB input are independent from this power supply sequence.

INTERFACE AND PIN CONNECTION

(1) Interface signals, power supply

CN1


Part No. : MRF03-6R-SMT

Adaptable socket : MRF03-2 × 6P-1.27 (For cable type) or MRF03-6PR-SMT (For board to board type)

Supplier : HIROSE ELECTRIC CO., LTD. (coaxial type)

Coaxial cable **Note**: UL20537PF75VLAS Supplier : HITACHI CO., LTD.

Pin No.	Symbol	Pin No.	Symbol
1	В	4	Vsync
2	G	5	Hsync
3	R	6	CLK

Note A coaxial cable shield should be connected with GND.

CN2

Part No. : IL-Z-12PL1-SMTY Adaptable socket : IL-Z-12S-S125C3

Supplier : Japan Aviation Electronics Industry Limited (JAE)

Pin No.	lo. Symbol Pin No.		Symbol
1	V _{DD}	7	N.C. Note
2	V _{DD}	8	N.C. Note
3	GND	9	DESEL
4	GND	10	GND
5	POWC	11	GND
6	GND	12	DE

Figure from socket view

12 11 2 1

Note N.C. (No connection) should be open.

CN3

Part No. : IL-Z-11PL1-SMTY Adaptable socket : IL-Z-11S-S125C3

Supplier : Japan Aviation Electronics Industry Limited (JAE)

Pin No.	No. Symbol Pin No.		Symbol
1	VDDB	7	ACA
2	VodB	8	BRTC
3	VDDB	9	BRTH
4	GNDB	10	BRTL
5	GNDB	11	N.C. Note
6	GNDB		

Figure from socket view

11 10 · · · 2 1

Note N.C. (No connection) should be open.

CN4

Part No. : IL-Z-13PL1-SMTY Adaptable socket : IL-Z-13S-S125C3

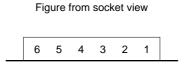
Supplier : Japan Aviation Electronics Industry Limited (JAE)

Pin No.	Symbol	Pin No.	Symbol
1	GND	8	CLAMP
2	CNTSEL	9	GND
3	CNTDAT	10	N.C. Note
4	CNTSTB	11	GND
5	GND	12	N.C. Note
6	CNTCLK	13	GND
7	CPSEL		

Figure from socket view

13 12 2 1

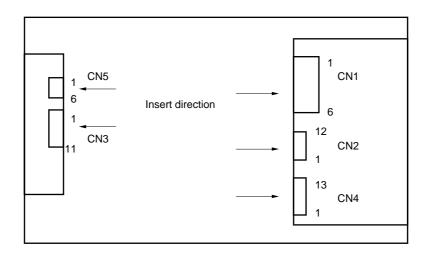
Note N.C. (No connection) should be open.



CN5

Part No. : IL-Z-6PL-SMTY Adaptable socket : IL-Z-6S-S125C3

Supplier : Japan Aviation Electronics Industry Limited (JAE)


Pin No.	Symbol	Pin No.	Symbol
1	GNDB	4	BRTC
2	GNDB	5	BRTH
3	ACA	6	BRTL

Note CN5 should be open in case of CN3 is used.

<Connector location>

Rear view

(2) Pin function

Symbol	I/O	Logic	Description
CLK	Input	Negative	Dot clock input (ECL level). This timing-signal is for display data.
Hsync	Input	Negative	Horizontal synchronous signal input (TTL level)
Vsync	Input	Negative	Vertical synchronous signal input (TTL level)
R	Input	_	Red video signal input (0.7 Vp-p, 75 Ω)
G	Input	-	Green video signal input (0.7 Vp-p, 75 Ω)
В	Input	_	Blue video signal input (0.7 Vp-p, 75 Ω)
POWC	Input	Positive	Power control signal (TTL level) High or open: Logic and LCD power are on. Low: Logic and LCD power are off. When POWC is Low, serial communication data is clear. Please set again Note1.
DESEL	Input	Positive	DE function select signal (TTL level) High: DE mode, Low or open: Fixed mode
DE	Input	Positive	Data enable signal input (TTL level) 1. Back-porch becomes free, when DESEL is High. 2. Back-porch becomes fix, when DESEL is Low. Then DE should be fixed High or Low.
CNTSEL	Input	-	Display control signal in case of serial communications (TTL level) High or open: Default, Low: External control Serial communications are set up by external control.
CNTDAT	Input	Positive	Display control data (TTL level) Detail of CNTDAT is mentioned in STATUS READ FUNCTIONS.
CNTCLK	Input	Positive	CLK for display control data (TTL level) Detail of CNTDAT is mentioned in STATUS READ FUNCTIONS .
CNTSTB	Input	Positive	Latch pulse for display control data (TTL level) Detail of CNTDAT is mentioned in STATUS READ FUNCTIONS .
CPSEL	Input	_	Clamp signal function select signal High or open: Default, Low: External control
CLAMP	Input	Negative	Clamp timing signal of black level (TTL level) This mode works in CPSEL = Low
ACA	Input	Positive	Luminance control signal (TTL level) High or open: Normal luminance Low: Low luminance (1/2 of normal luminance)
BRTC	Input	Positive	Backlight ON/OFF control signal (TTL level) High or open: Backlight ON, Low: Backlight OFF
BRTH	Input	_	Variable resistor control Note2 or Voltage control Note3
BRTL	Input	-	
V _{DD}	_	_	Power supply for Logic and LCD driving, +12 V (±5 %)
VDDB	-	-	Power supply for backlight, +12 V (±5 %)
GND	_	-	Signal ground for Logic and LCD driving (Connect to a system ground)
GNDB	-	_	Ground for backlight. GNDB is not connected to the flame ground of LCD module.

Notes 1. When POWC is "Low" logic input signal should be all "0 V". If the signal is more than "0.3 V", inside circuits of the LCD module may be broken.

2. The variable resistor for luminance control should be 10 k Ω type, and zero point of the resistor correspond to the minimum of luminance.

Mating Variable Resistor: 10 kΩ±5 %, B curve

3. If luminance is controlled by BRTH/BRTL input voltage, at first BRTH is "0 V", and BRTL input voltage controls brightness. When BRTL input voltage is "1 V" the luminance become maximum, and when BRTL input voltage is "0 V", the luminance becomes minimum.

STATUS READ FUNCTIONS

This LCD module has following functions by serial data input (See CNTDAT COMPOSITION)

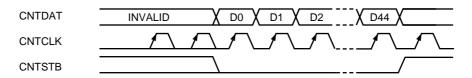
(1) Expansion mode : See table 1 and EXPANSION FUNCTION

(2) Display position control (Vertical)
(3) Display position control (Horizontal)
(4) CLK delay control
(5) CLK fall/rise synchronous change
(6) See table 3
(7) See table 3
(8) See table 4

Set up the following items to work the above functions

(A) CLK counts of horizontal period : See table 6

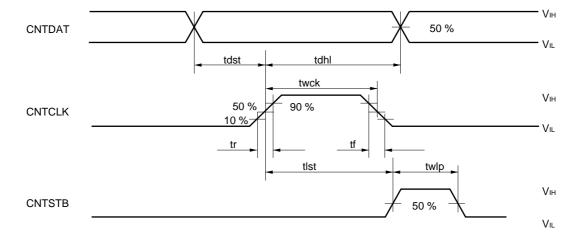
(B) CLK frequency range : See table 7


If CNTSEL is Low, the above functions are valid (CNTSEL is High or open, default values are valid.). After serial data are transferred, the data is latched by CNTSTB. Once, the data is latched, the above functions are effective.

Please keep CNTSTB to be Low during transferring data. Input data can be changed during power on, but LCD display may be disturbed. When the serial data are changed, we recommend that the backlight power is off using BRTC function.

SERIAL COMMUNICATION TIMING AND WAVEFORM

This LCD module can be read the following status data.


Serial Communication Timing

Parameter	Symbol	MIN.	MAX.	Unit	Remark
CLK pulse-width	twck	50	-	ns	CNTCLK
CLK frequency	fclk	-	5	MHz	
DATA set-up-time	tdst	50	-	ns	CNTDAT
DATA hold-time	tdhl	50	-	ns	
Latch pulse-width	twlp	50	-	ns	CNTSTB
Latch set-up time	tlst	50	_	ns	
Rise/fall time	tr, tf	-	50	ns	CNT xxx

Serial Communication Waveform

CNTDATA COMPOSITION

DATA	DATA name	Function	Remark
D0	VEX3	Expansion mode	See table 1.
D1	VEX2	Expansion mode	
D2	VEX1	Expansion mode	
D3	VEX0	Expansion mode	
D4	VD10	Display position control (Vertical) (MSB)	See table 2.
D5	VD9	Display position control (Vertical)	
D6	VD8	Display position control (Vertical)	
D7	VD7	Display position control (Vertical)	
D8	VD6	Display position control (Vertical)	
D9	VD5	Display position control (Vertical)	
D10	VD4	Display position control (Vertical)	
D11	VD3	Display position control (Vertical)	
D12	VD2	Display position control (Vertical)	
D13	VD1	Display position control (Vertical)	
D14	VD0	Display position control (Vertical) (LSB)	
D15	DELAY6	CLK delay control (MSB)	See table 3.
D16	DELAY5	CLK delay control	
D17	DELAY4	CLK delay control	
D18	DELAY3	CLK delay control	
D19	DELAY2	CLK delay control	
D20	DELAY1	CLK delay control	
D21	DELAY0	CLK delay control (LSB)	
D22	CKS	CLK fall/rise synchronous charge	See table 4.
D23	HD8	Display position control (Horizontal) (MSB)	See table 5.
D24	HD7	Display position control (Horizontal)	
D25	HD6	Display position control (Horizontal)	
D26	HD5	Display position control (Horizontal)	
D27	HD4	Display position control (Horizontal)	
D28	HD3	Display position control (Horizontal)	
D29	HD2	Display position control (Horizontal)	
D30	HD1	Display position control (Horizontal)	
D31	HD0	Display position control (Horizontal) (LSB)	
D32	HSE10	CLK counts of horizontal period (MSB)	See table 6.
D33	HSE9	CLK counts of horizontal period	
D34	HSE8	CLK counts of horizontal period	
D35	HSE7	CLK counts of horizontal period	
D36	HSE6	CLK counts of horizontal period	
D37	HSE5	CLK counts of horizontal period	
D38	HSE4	CLK counts of horizontal period	
D39	HSE3	CLK counts of horizontal period	
D40	HSE2	CLK counts of horizontal period	
D41	HSE1	CLK counts of horizontal period	
D42	HSE0	CLK counts of horizontal period (LSB)	
D43	MOD1	CLK frequency range	See table 7.
D44	MOD0	CLK frequency range	

Table 1. Expansion mode (VEX3 to VEX0: 4 bits)

VEX3	VEX2	VEX1	VEX0	Vertical magnification	Display mode	Display image
0	0	0	0	1	XGA	Standard Note
0	0	0	1	1.25	SVGA	See Expansion Function (3) Display Image.
0	0	1	0	1.6	PC98, VGA, VGA text	
0	0	1	1	-	Prohibit	
0	1	0	0	-	Prohibit	
0	1	0	1	-	Prohibit	
0	1	1	0	-	Prohibit	
0	1	1	1		Prohibit	
1	0	0	0	-	Prohibit	
1	0	0	1	1.2	832 × 624 (MAC)	
1	0	1	0	-	Prohibit	
1	0	1	1	-	Prohibit	
1	1	0	0	_	Prohibit	
1	1	0	1	_	Prohibit	
1	1	1	0	_	Prohibit	
1	1	1	1	_	Prohibit	

Note When CNTSEL is High or open, display mode is XGA.

Table 2. Display position control (Vertical) (VD10 to VD0: 11 bits)

VD10	VD9	VD8	VD7	VD6	VD5	VD4	VD3	VD2	VD1	VD0	Vertical position [H] Note 1
0	0	0	0	0	0	0	0	0	0	0	Prohibit
0	0	0	0	0	0	0	0	0	0	1	Prohibit
0	0	0	0	0	0	0	0	0	1	0	Prohibit
0	0	0	0	0	0	0	0	0	1	1	Prohibit
0	0	0	0	0	0	0	0	1	0	0	4
0	0	0	0	0	0	0	0	1	0	1	5
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	1	1	1	0	1	2045
1	1	1	1	1	1	1	1	1	1	0	2046
1	1	1	1	1	1	1	1	1	1	1	2047 Note 2

Notes 1. This is horizontal line number for effective VIDEO signal from Vsync-fall.

2. The maximum vertical position is Vsync total.

Remark When CNTSEL is High or open, vertical position is fixed at 35 [H].

Table 3. CLK delay control (DELAY6 to DELAY0: 7 bits)

DELAY [60]	Delay Note	Unit
00H	7.0	ns
01H	7.6	ns
02H	8.2	ns
03H	8.8	ns
04H	9.4	ns
05H	10.0	ns
06H	10.5	ns
07H	11.2	ns
08H	11.8	ns
09H	12.4	ns
0AH	13.0	ns
0BH	13.7	ns
0CH	14.2	ns
0DH	14.8	ns
0EH	15.3	ns
0FH	15.9	ns
10H	16.6	ns
11H	17.2	ns
12H	17.8	ns
13H	18.4	ns
14H	18.9	ns
15H	19.5	ns
16H	20.1	ns
17H	20.7	ns
18H	21.4	ns
19H	22.0	ns
1AH	22.6	ns
1BH	23.2	ns
1CH	23.8	ns
1DH	24.4	ns
1EH	24.9	ns
1FH	25.6	ns
20H	26.3	ns
21H	26.9	ns
22H	27.4	ns
23H	28.1	ns
24H	28.5	ns
25H	29.1	ns
26H	29.7	ns
27H	30.3	ns
28H	31.0	ns
29H	31.6	ns
2AH	32.2	ns

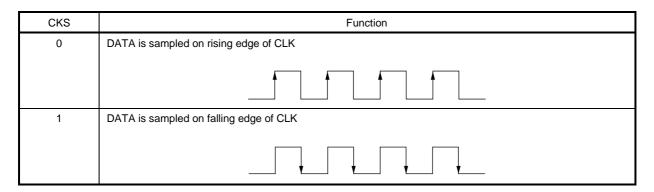
DELAY [60]	Delay Note	Unit
2BH	32.8	ns
2CH	33.3	ns
2DH	33.9	ns
2EH	33.4	ns
2FH	35.1	ns
30H	35.6	ns
31H	36.1	ns
32H	36.8	ns
33H	37.5	ns
34H	37.9	ns
35H	38.5	ns
36H	39.1	ns
37H	39.7	ns
38H	40.4	ns
39H	41.0	ns
ЗАН	41.5	ns
3ВН	42.1	ns
3CH	42.6	ns
3DH	43.2	ns
3EH	43.8	ns
3FH	44.4	ns
40H	45.0	ns
41H	45.6	ns
42H	46.2	ns
43H	46.8	ns
44H	47.3	ns
45H	47.8	ns
46H	48.4	ns
47H	49.0	ns
48H	49.6	ns
49H	50.2	ns
4AH	50.8	ns
4BH	51.4	ns
4CH	51.9	ns
4DH	52.6	ns
4EH	53.1	ns
4FH	53.7	ns
50H	54.5	ns
51H	55.0	ns
52H	55.6	ns
53H	56.3	ns
54H	56.8	ns
55H	57.4	ns

DELAY [60]	Delay Note	Unit
56H	57.9	ns
57H	58.5	ns
58H	59.2	ns
59H	59.8	ns
5AH	60.4	ns
5BH	61.1	ns
5CH	61.6	ns
5DH	62.2	ns
5EH	62.7	ns
5FH	63.3	ns
60H	64.0	ns
61H	64.7	ns
62H	65.3	ns
63H	66.0	ns
64H	66.5	ns
65H	67.1	ns
66H	67.7	ns
67H	68.3	ns
68H	68.9	ns
69H	69.5	ns
6AH	70.1	ns
6BH	70.7	ns
6CH	71.2	ns
6DH	71.9	ns
6EH	72.4	ns
6FH	73.1	ns
70H	73.6	ns
71H	74.2	ns
72H	74.8	ns
73H	75.4	ns
74H	75.9	ns
75H	76.5	ns
76H	77.0	ns
77H	77.7	ns
78H	78.3	ns
79H	79.0	ns
7AH	79.6	ns
7BH	80.2	ns
7CH	80.8	ns
7DH	81.4	ns
7EH	81.9	ns
7FH	82.5	ns
Ē	•	

Note This delay value is typical value at $T_a = 25$ °C. And the value varies by the ambient temperature and the module itself.

Please set up a preferable display position. See the following references.

<1> Variation of CLK delay by temperature drift (for reference). The temperature constant of CLK delay is 0.2 %/°C.


Calculated example:

In case of delay time is 20 ns at Ta = 25°C;

- (a) In case T_a rising to 50°C. Increase of delay time \rightarrow (50°C 25°C) \times 0.002 \times 20 ns = +1 ns So, the total delay time is 21 ns at T_a = 50°C.
- (b) In case T_a falling to 0°C. Decrease of delay time \rightarrow (0°C 25°C) \times 0.002 \times 20 ns = -1 ns So, the total delay time is 19 ns at $T_a = 0$ °C.
- <2> Variation of CLK delay time against each LCD module (for reference). -10.5 % to +14.4 %

	MOD setting						
	0, 0	0, 1	1, 0	1, 1			
The upper limit of CLK delay; DELAY [60]	Prohibit	59H	6BH	7FH			

Table 4. Clock fall/rise synchronous change

Remark When CNTSEL is High or open, CKS is "0".

Table 5. Display position control (Horizontal) (HD8 to HD0: 9 bits)

HD8	HD7	HD6	HD5	HD4	HD3	HD2	HD1	HD0	Horizontal position [CLK] Note
0	0	0	0	0	0	0	0	0	Prohibit
0	0	0	0	0	0	0	0	1	Prohibit
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
0	0	1	1	1	1	1	1	1	Prohibit
0	1	0	0	0	0	0	0	0	64
0	1	0	0	0	0	0	0	1	65
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	1	0	1	509
1	1	1	1	1	1	1	1	0	510
1	1	1	1	1	1	1	1	1	511

Note This is CLK number from Hsync-fall to effecting VIDEO signal.

Remark When CNTSEL is High or open, Horizontal position is set at 296 [CLK].

Table 6. CLK counts of horizontal period (HSE10 to HSE0: 11 bits)

HSE10	HSE 9	HSE 8	HSE 7	HSE 6	HSE 5	HSE 4	HSE 3	HSE 2	HSE 1	HSE 0	CLK count Note
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	1	1	1	0	1	2,045
1	1	1	1	1	1	1	1	1	1	0	2,046
1	1	1	1	1	1	1	1	1	1	1	2,047

Note This is CLK number from Hsync to next Hsync.

Remarks 1. When CNTSEL is High or open, CLK count is set at 1344 [CLK].

2. This CLK count must be equal to CLK count of input signal.

Table 7. CLK frequency select (MOD1 to MOD0: 2 bits)

MOD1	MOD0	CLK frequency [MHz]
0	0	Prohibit
0	1	65 to 79
1	0	50 to 65
1	1	20 to 50

Remarks 1. Set up the MOD1 and MOD0 complying with input CLK frequency.

2. When CNTSEL is High or open, CLK frequency is set 65 to 79 MHz.

EXPANSION FUNCTION

(1) Expansion mode

Expansion mode is a function to expand screen. For example, VGA signal has 640×480 pixels. But, if the display data can be expanded to 1.6 times vertically and horizontally, VGA screen image can be displayed fully on the screen of XGA resolution.

This LCD module has the function of expanding vertical direction as shown in **Table 1**. And expanding horizontal direction is possible by setting input CLK frequency which is equivalent to the magnification. It is necessary to make this CLK outside of this LCD module.

The below image is display example, when DE function is default and HD and VD is set to most suitable frequency. And when DE function is used, HD and VD become default. Adjustment the display to the best position by DE signal.

Please adopt this mode after evaluating display quality, because the appearance of expansion mode is happened to become bad some cases.

The followings show the display magnifications for each mode.

land display	Niveshau of nivele	Magnification				
Input display	Number of pixels	Vertical	Horizontal Note			
XGA	1024 × 768	1	1			
SVGA	800 × 600	1.25	1.25			
VGA	640 × 480	1.6	1.6			
VGA text	720 × 400	1.6	1.4			
PC9801	640 × 400	1.6	1.6			
MAC	832 × 624	1.2	1.2			

 $\textbf{Note} \quad \text{The horizontal magnification multiples the input clock (CLK)}.$

Input CLK = system CLK × horizontal magnification

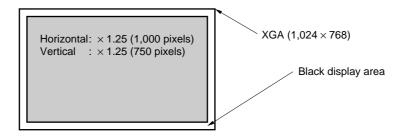
Example In case of XGA and VGA, CLK frequency can be decided as follows.

XGA: (system CLK (65 MHz)) \times 1.0 = 65 MHz

VGA: (system CLK (25.175 MHz)) × 1.6 = 40.28 MHz

(2) Auto recognition data

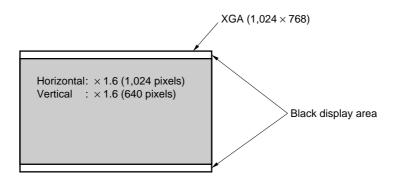
		In	out signa	al					Module serial data setting		
	System	Input			Horiz	zontal	Ver	tical	HSE	HD Note2	VD Note2
Mode	Video CLK [MHz]	CLK Calculation formula	Hsync [kHz]	Vsync [Hz]	Count number [CLK]	DSP Note [CLK]	Count number [H]	DSP Note [H]		Calculation formura	
	(A)	(A) × Hor. mag			(B)	(C)	_	(D)	(B) × Hor. mag.	(C) × Hor. mag.	= (D)
XGA	65	(A) × 1	48.363	60.004	1,344	296	806	35	(B) × 1	(C) × 1	= (D)
(1024×768)	75		56.476	70.069	1,328	280	806	35			
	78.75		60.023	75.029	1,312	272	800	31			
MAC (832 × 624)	57.283	(A) × 1.2	49.725	74.5	1,152	288	667	42	(B) × 1.2	(C) × 1.2	
SVGA	36	(A) × 1.25	35.156	56.25	1,024	200	625	24	(B) × 1.25	(C) × 1.25	1
(800×600)	40		37.879	60.317	1,056	216	628	27			
	50		48.077	72.188	1,040	184	666	29			
	49.5		46.875	75	1,056	240	666	24			
VGA	25.175	(A) × 1.6	31.469	59.94	800	144	525	35	(B) × 1.6	(C) × 1.6	
(640×480)	31.5		37.861	72.809	832	168	520	31			
	31.5		37.5	75	840	184	500	19			
	30.24		35.0	66.667	864	160	525	42			
VGA text	28.322	(A) × 1.4	31.469	70.087	900	153	449	37	(B) × 1.4	(C) × 1.4	
(720×400)	35.5		37.927	85.04	936	180	446	45			
PC9801 (640 × 400)	21.053	(A) × 1.6	24.827	56.432	848	144	440	33	(B) × 1.6	(C) × 1.6	443

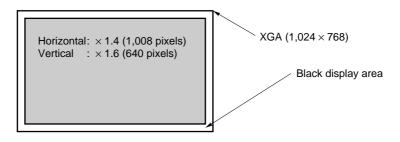

Notes 1. DSP = Display Start Period, DSP is total of "pulse-width" and "back-porch".

2. HD and VD are approximate value. Set HD and VD in case of adjusting display to the screen center.

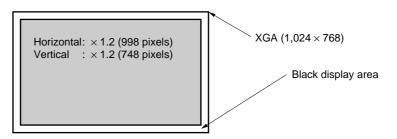
Remark The pulse-width of Hsync, Vsync and back-porch are the same as XGA-mode (Standard mode).

(3) Display Image


1. SVGA mode (800 × 600)

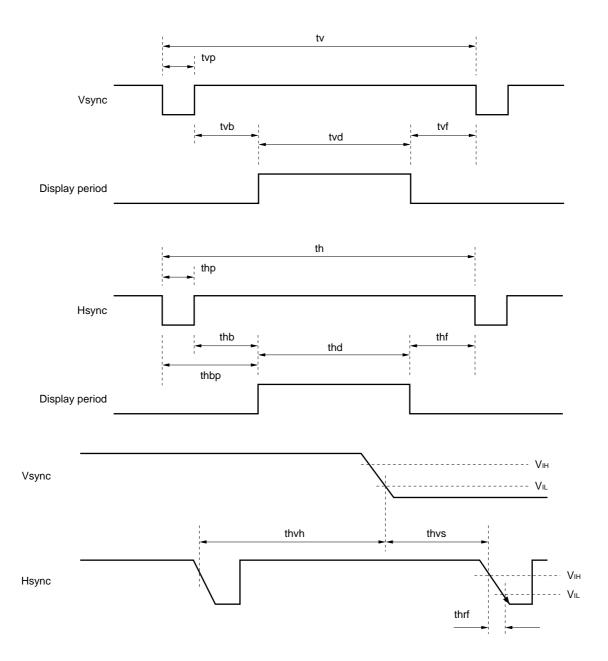

2. VGA mode (640 × 480)

Horizontal: ×1.6 (1,024 pixels) Vertical : ×1.6 (768 pixels)


3. PC9801 mode (640 × 400)

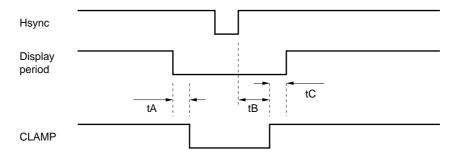
4. VGA text mode (720 × 400)

5. 832×624 MAC mode (832 × 624)



INPUT SIGNAL TIMING

(1) XGA mode (standard)


	Name	Symbol	MIN.	TYP.	MAX.	Unit	Remark
CLK	Frequency	1/tc	52.0 –	65.0 15.385	79.0 –	MHz ns	XGA standard
	Rise/Fall	tcrf	-	_	10	ns	
	Pulse-width	tc/tcl	0.4	0.5	0.6	-	
Hsyne	Period	th	16.0 –	20.677 1,344	22.7 –	μs CLK	48.363 kHz (TYP.)
	Display	thd	- -	15.754 1,024	- -	μs CLK	
	Front-porch	thf	_ 10	0.369 24	-	μs CLK	
	Pulse-width	thp	- 16	2.092 136	- -	μs CLK	
	Back-porch	thb	1.0 44	2.462 160	-	μs CLK	Note
	Pulse-width + Back-porch	thbp	1.8	_	_	μs	
	Vsync-Hsync	thvh	4	-	1	ns	
	timing	thvs	1	_	ı	CLK	
	Rise/Fall	thrf	_	_	10	ns	
Vsync	Period	tv	13.3 –	16.665 806	18.5 -	ms H	60.004 Hz (TYP.)
	Display	tvd	- -	15.880 768	- -	μs H	
	Front-porch	tvf	- 1	62.031 3		μs H	
	Pulse-width	tvp	- 2	124.06 6	- -	μs H	
	Back-porch	tvb	- 5	599.63 29	-	μs Η	
DE	Set-up time	tds	2	_	_	ns	
	Hold time	tdh	4	_	1	ns	
	Rise/Fall	tdrf	-	_	10.0	ns	
Analog R, G, B	_	tda	4	_	_	ns	

Note Minimum values of Back-porch (thb) must be satisfied with both 1.0 μ s and 44 CLK.

(2) Timing for generating clamp signal internally

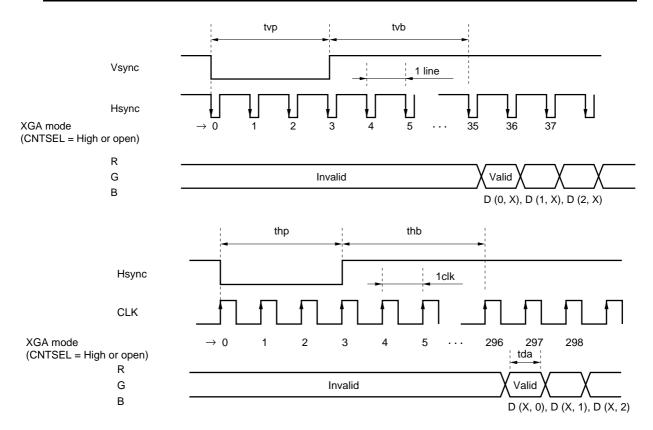
MOD1	MOD2	tA [CLK]	tB [CLK]	tC [ns]					
0	0	Prohibit							
0	1	44	32						
1	0	34	22	200 minimum					
1	1	28	18						

Remark Exclude noises on analog R, G, B signal, because analog R, G, B signals are the black level reference during CLAMP = Low. If noises are on the analog signals, luminance level of display is changed and the display becomes bad.

(3) Timing for inputting clamp signal from outside

Item	Min.	Тур.	Max.	Unit	Remark
tA	0.1	-	-	μs	-
tB	0.3	-	-	μs	-
tC	0.2	-	-	μs	-

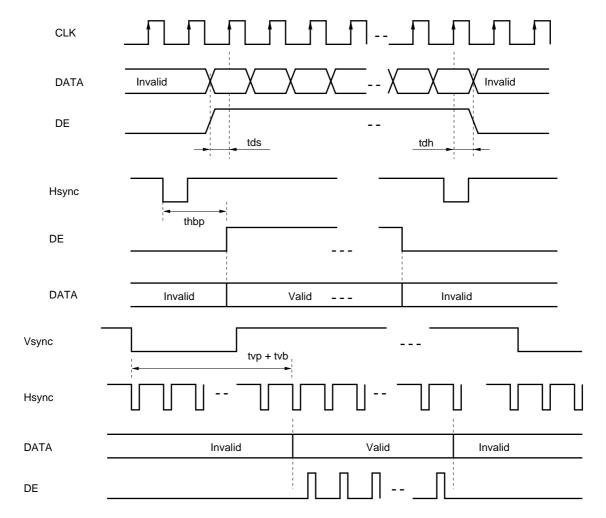
Remark Exclude noises on analog R, G, B signal, because analog R, G, B signals are the black level reference during CLAMP = Low. If noises are on the analog signals, luminance level of display is changed and the display becomes bad.



INPUT SIGNAL AND DISPLAY POSITION (DESEL = Low)

(1) XGA standard timing

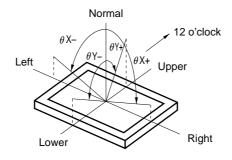
Pixels


D (0, 0)	D (0, 1)	D (0, 2)	•••		D (0, 1,023)	
D (1, 0)	D (1, 1)	D (1, 2)	•••		D (1, 1,023)	
D (2, 0)	D (2, 1)	D (2, 2)	•••	•••	D (2, 1,023)	
•	•	•	•		•	
•	•	•	•		•	
•	•	•	•		•	
•	•	•	•		•	
D (767, 0)	D (767, 1)	D (767, 2)	••• D (76)		D (767, 1,023)	

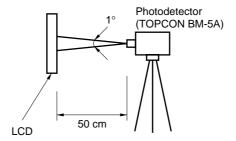
Remark tda should be more than 4 ns.

INPUT SIGNAL AND DISPLAY POSITION (DESEL = HIGH)

OPTICAL CHARACTERISTICS

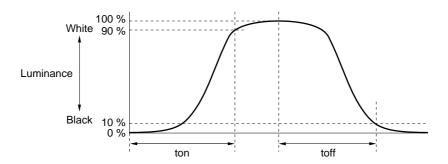

Parameter		Symbol	Condition		MIN.	TYP.	MAX.	Unit
Luminance		LVMAX	White, at center		150	200	1	cd/m²
Contrast ratio		CR	White/Black, at center		100	150	1	-
Viewing Horizontal		θX+	CR > 10, θ Y = ±0°, White/Black		70	80	1	deg.
angle		θХ-	CR > 10, θ Y = ±0°, White/Black		70	80	1	deg.
range Vertical		θY+	CR > 10, θ X = \pm 0°, White/Bla	70	80	_	deg.	
		θY-	CR > 10, θ X = \pm 0°, White/Bla	60	70	1	deg.	
Color gamut		С	at center, to NTSC		35	40	_	%
Response time		ton	Black to White		-	35	60	ms
		toff	White to Black		_	40	80	
Luminance uniformity		-	Maximum luminance ,white, Refer to Remark 5.		-	_	1.30	_
Luminance control range by BRTH/BRTL		-	Maximum luminance	ACA = High	_	30 - 100	_	%
		: 100 %	ACA = Low	-	60 - 100	_		

Remarks 1. The contrast ratio is calculated by using the following formula.

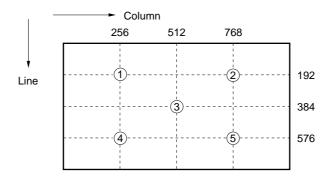

$$\mbox{Contrast ratio (CR)} = \frac{\mbox{Luminance with all pixels in white}}{\mbox{Luminance with all pixels in black}}$$

The Luminance is measured in darkroom.

2. Definitions of viewing angle are as follows.



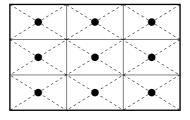
3. The luminance is measured after 20 minutes from the module works, with all pixels in white. Typical value is measured after luminance saturation.



4. Definition of response time is as follows.

Photo-detector output signal is measured when the luminance changes "white" to "black". Response time is the time between 0 % and 90 % of the photo-detector output amplitude.

5. The luminance is measured at near the five points shown below.



RELIABILITY TEST

Test item	Test condition			
High temperature/humidity operation Note 1	$50\pm2^{\circ}\text{C},85\%$ relative humidity 240 hours Display data is black.			
Heat cycle Note 1 (operation)	<1> 0°C ± 3°C ··· 1 hour 55°C ± 3°C ··· 1 hour <2> 50 cycles, 4 hours/cycle <3> Display data is black.			
Thermal shock Note 1 (non-operation)	<1> -20°C ± 3°C ··· 30 minutes 60°C ± 3°C ··· 30 minutes <2> 100 cycles <3> Temperature transition time within 5 minutes			
Vibration Notes 1, 2 (non-operation)	<1> 5 - 100 Hz, 2G 1 minute/cycle X, Y, Z direction <2> 50 times each direction			
Mechanical shock Notes 1, 2 (non-operation)	<1> 55 G, 11 ms X, Y, Z direction <2> 3 times each direction			
ESD Notes 1, 3 (operation)	150 pF, 150 Ω , \pm 10 kV 9 places on a panel 10 times each place at one-second intervals			
Dust Note 1 (operation)	15 kinds of dust (JIS Z 8901) Hourly 15 seconds stir, 8 times repeat			

Notes 1. Display function is checked by the same condition as LCD module out-going inspection.

- 2. Physical damage.
- **3.** Discharge points "●" are shown in the figure.

GENERAL CAUTIONS

Next figures and sentence are very important. Please understand these contents as follows.

This figure is a mark that you will get hurt and/or the module will have damages when you make a mistake to operate.

This figure is a mark that you will get an electric shock when you make a mistake to operate.

This figure is a mark that you will get hurt when you make a mistake to operate

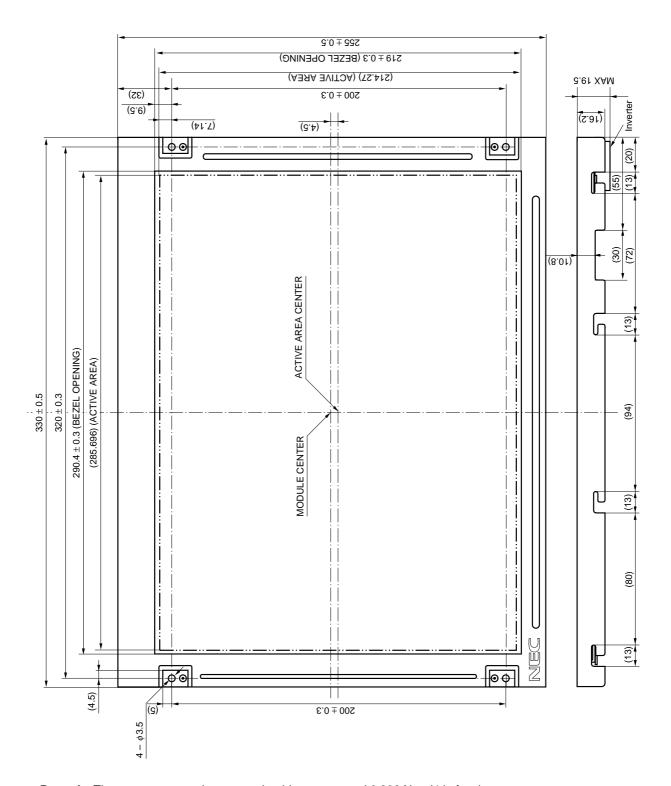
CAUTION

Do not touch an inverter, on which is stuck a caution label, while the LCD module is under the operation, because of dangerous high voltage.

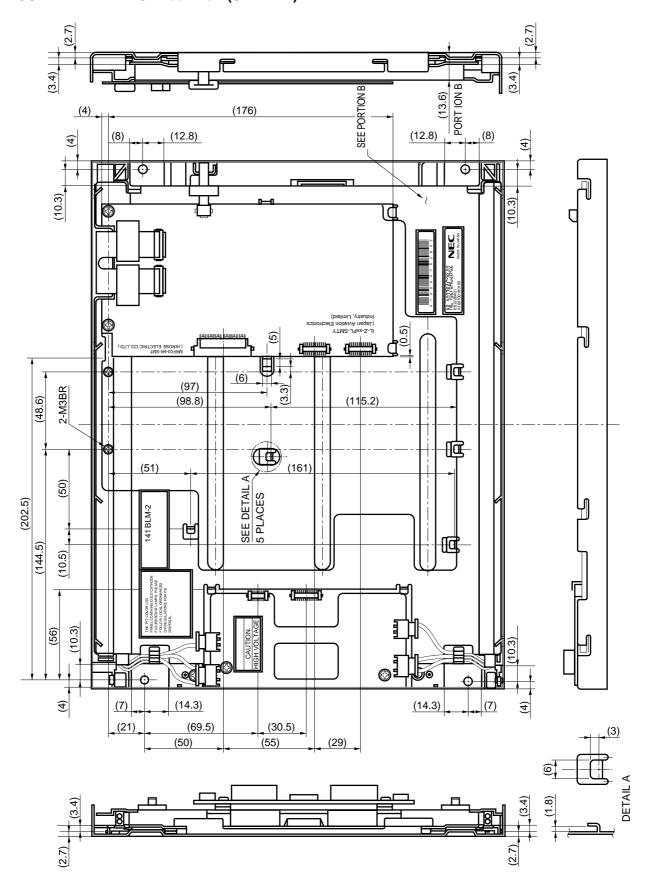
- (1) Caution when taking out the module
 - a) Pick the pouch only, in taking out module from a carrier box.
- (2) Cautions for handling the module
 - a) As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges.
 - b) As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - c) As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - d) Do not pull the interface connectors in or out while the LCD module is operating.
 - e) Put the module display side down on a horizontal plane.
 - f) Handle connectors and cables with care.
 - g) When the module is operating, do not lose CLK, Hsync or Vsync signal. If any one of these signals is lost, the LCD panel would be damaged.
 - h) The torque to mounting screw should never exceed 0.392 N·m (4 kgf·cm).
- (3) Cautions for the atmosphere
 - a) Dew drop atmosphere should be avoided.
 - b) Do not store and/or operate the LCD module in a high temperature and/or high humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
 - c) This module uses cold cathod fluorescent lamps. Therefore, the life time of lamps becomes short conspicuously at low temperature.
 - d) Do not operate the LCD module in a high magnetic field.
- (4) Caution for the module characteristics
 - a) Do not apply fixed pattern data signal for a long time to the LCD module. It may cause image sticking.
 Please use screen savers if the display pattern is fixed more than one hour.

(5) Other cautions

- a) Do not disassemble and/or reassemble LCD module.
- b) Do not readjust variable resistors etc.
- c) When returning the module for repair or etc, please pack the module not to be broken. We recommend to the original shipping packages.


Liquid Crystal Display has the following specific characteristics. There are not defects or malfunctions.

- The display condition of LCD module may be affected by the ambient temperature.
- The LCD module uses cold cathode tube for backlighting. Optical characteristics, like luminance or uniformity, will change during time.
- Uneven brightness and/or small spots may be noticed depending on different display patterns.


OUTLINE DRAWING: Front View (Unit: mm)

 $\textbf{Remark} \quad \text{The torque to mounting screw should never exceed 0.392 N·m (4 kgf·cm)}.$

OUTLINE DRAWING: Rear View (Unit: mm)

Remark The torque to mounting screw should never exceed 0.392 N·m (4 kgf·cm).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents. Copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its Electronic Components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC Electronic Components, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.