CHIMEI 意信電子 CHI HSIN ELECTRONICS CORP. Product Specifications

Customer		
Description	8" TFT LCD Module	
Model Name	LS080HT111	
Date	2008/04/23	4
Doc. No.		Of the
Revision	С	A.

Customer A	Approval	
		2 Shilling
Date		
The above signa warranty in the sp	ture represents t	hat the product specifications, testing regulation, and cepted

Å	Engi	neering	
Check O	Date	Prepared	Date
HIHAN		A.A.A.	2008.04.23

Head Office & Factory : No. 12, Nanke 8th Rd., Tainan Science-Based Industrial Park, Taiwan, 74144 R.O.C.

TEL: +886-6-5889980 FAX: +886-6-5051522

CONTENTS

No.	ITEM	PAGE
0	RECORD OF REVISION	3
1	SUMMARY	4
2	FEATURES	4
3	GENERAL SPECIFICATIONS	4
4	ABSOLUTE MAXIMUM RATINGS	4
5	ELECTRICAL CHARACTERISTICS	5
6	DC CHARATERISTICS	5
7	AC CHARACTERISTICS	6~7
8	OPTICAL CHARATERISTIC	8~10
9	INTERFACE	11~12
10	BLOCK DIAGRAM	13
11		14
12	OUTLINE DRAWING	15
13	PACKAGE INFORMATION	15
14	PRECAUTIONS	15~16

Preliminary

-- NUNS OMHUMAN

RECORD OF REVISIONS

	Revision	Date	Page	Description
	А	2008/03/18	All	New Creation
	В	2008/03/31	5	AC Timing characteristics
			6	AC Timing diagram
	С	2008/04/23	15	Outline drawing
				2 [°]
			Å	EO M
			\sum	
	~			
	5)	·		
~				

1. SUMMARY

This technical specification applies to 8.0"color TFT-LCD panel. The 8.0" color TFT-LCD panel is designed for Industrial Display, Instrument, Game Machine application and other electronic products which require high quality flat panel displays. This module follows RoHS.

2. FEATURES

High Resolution: 1,440,000 Dots (800 RGB x 600). Image Reversion: Up/Down and Left/Right.

3. GENERAL SPECIFICATIONS Unit Parameter **Specifications** Screen Size 8(Diagonal) inch Display Format 800RGB x 600 Dot 162(H) x 121.5(V) mm Active Area Pixel Pitch 0.2025(H) x 0.2025(V) mm Pixel Configuration RGB-Stripe 183.00(W) x 141.00(H) x 5.80(D) Outline Dimension mm Weight 250 g View Angle Direction 6 o'clock Operation -30~85 °C Temperature Range Storage -40~85 °C

4. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Val	ues	Unit	Condition	
Rem	Symbol	Min.	Max.	onic	oonation	
Power Voltage	VDD	-0.3	+7.0	V	VSS=0	
Logic Input Signal	Vin	-0.3	VDD+0.3	V		
Logic Output Signal	Vout	-0.3	VDD+0.3	V		

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above.

5. ELECTRICAL CHARACTERISTICS

5.1. Operating conditions:

Itom	Symbol		Values		Unit	Pomark
item	Symbol	Min. Typ. I		Max.	Onic	itemai k
Digital Power Supply	VDD	3.0	3.3	3.6	V	
Digital Operating Current	IVDD	-	200	-	mA	
Power Consumption	PLCD	-	660	-	mW	

5.2 LED driving conditions

2 LED driving conditio	ons					T OTH
ltom	Symbol		Values	6	Unif	Romark
ICEIII	Symbol	Min.	Тур.	Max.		Kemark
Power Consumption	PLED	-	1782	-	mW>	
LED Current	lf	-	180	- 4	🔿 mA	
Backlight Voltage	Vb	-	9.9	10.5	Уv	

Note 1 : Ta = 25℃

Note 2 : Brightess to be decreased to 50% of the initial value

6. DC CHARATERISTICS

Paramotor	Symbol		Rating	Unit	Condition	
Falameter	Symbol	Min.	Тур.	Max.	Onit	Condition
Low level input voltage	VIL	0	-	0.3*D_VDD	V	
Hight level input voltage	VIH	0.7*D_VDD	-	D_VDD	V	

7. AC CHARATERISTICS

7.1 AC Timing Characteristics

i light level liput voltage	VH 0.7 D_				
7. AC CHARATERISTICS 7.1 AC Timing Characte	ristics	HOR C			Month
Γ					Τ
Parameter	Symbol	Min	Spec.	Max	Unit
CLK Frequency	ГСРН	-	39,79	-	MHz
CLK Period	FCPH	-	25.13	-	ns
CLK Pulse Duty	FCWH	40	50	60	%
DE Period	FDEH+TDEL	1000	1056	-	ТСРН
DE Pulse Width	Тден	-	800	-	ТСРН
DE Frame Blanking	Tdeb	10	28	110	FDEH+TDEL
DE Frame Width	TDE	-	600	-	FDEH+TDEL
OEV Pulse Width	TOEV	-	150	-	ТСРН
CKV Pulse Width	TCKV	-	133	-	ТСРН
DE (Internal)-STV Time	T1	-	4	-	ТСРН
DE (Internal)-CKV Time	T2	-	40	-	ТСРН
DE (Internal)-OEV Time	T3	-	23	-	ТСРН
DE (Internal)-POL Time	T4	-	157	-	ТСРН
STV Pulse Width	-	-	1	-	TH

THS+THA<TH

7.2 AC Timing Diagrams

Ta=25±2℃, ILED=20mA

8. OPTICAL CHARATERISTIC

ltem		Symbol	Condition	Min	Тур	Max	Unit	Note
Brightnes	SS			200	250	-	cd/m2	
Posponso t	imo	TR	A -0	-	15	I	ms	(2)
Response i		TF	0=0	-	35	I	ms	(2)
Contrast ra	atio	CR	At optimized viewing angle	450	500	-	-	(3)
Color	\//bito	Wx	<u> </u>	0.26	0.31	0.36	0/	
Chromaticity	VVIILE	Wy	0=0	0.28	0.33	0.38	/0 ~	A A
	Hor	ΘR		60	70	I		\sum
		ΘL	CP>10	60	70	-	Dograa	(5)
	Vor	φH		50	60	-	Degree	(3)
	vel.	φL		60	70	- 🔨	\sim	

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

Fig. 8-2 Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from

90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%.

Fig. 3-3 Definition of response time

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR)=

Luminance measured when LCD on the "Black" state

Note 5: White Vi = $V_{i50} \pm 1.5V$ Black Vi = $V_{i50} \pm 2.0V$ "±" means that the analog input signal swings in phase with VCOM signal. "±" means that the analog input signal swings out of phase with VCOM signal.

Doc. No.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened. Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Brightness (min) Note 8 : Uniformity (U) =- x 100% Brightness (max)

9. INTERFACE

9.1. LCM PIN Definition

	Pin	Symbol	I/O	Function	Remark
	1	GND	Ι	Power Ground	
	2	GND	I	Power Ground	
	3	NC	-	NC	
	4	VCC	I	Power Supply (3.3V)	
-	5	VCC	Ι	Power Supply (3.3V)	107
-	6	VCC	I	Power Supply (3.3V)	2
Ī	7	VCC	Ι	Power Supply (3.3V)	Þ
Ī	8	NC	-	NC	
	9	DE	Ι	Data Enable	
	10	GND	I	Power Ground	
Ī	11	GND	I	Power Ground	
	12	GND	Ι	Power Ground	
-	13	B5	Ι	Blue Data bit (MSB)	
	14	B4	Ι	Blue Data bit	
-	15	B3	Ι	Blue Data bit	
	16	GND	I	Power Ground	
	17	B2		Blue Data bit	
-	18	B1	R	Blue Data bit	
	19	BO	M	Blue Data bit (LSB)	
	20	GND	I	Power Ground	
	21	G5	I	Green Data bit (MSB)	
Ī	22	G 4	I	Green Data bit	
4	23	G3	I	Green Data bit	
5	24	GND	I	Power Ground	
	25	G2	I	Green Data bit	
	26	G1	I	Green Data bit	
ŀ	27	G0	I	Green Data bit (LSB)	
ŀ	28	GND	I	Power Ground	
	29	R5	I	Red Data bit (MSB)	
ŀ	30	R4	I	Red Data bit	

31	R3	Ι	Red Data bit		
32	GND	I	Power Ground		
33	R2	Ι	Red Data bit		
34	R1	Ι	Red Data bit		
35	R0	Ι	Red Data bit (LSB)		
36	GND	Ι	Power Ground		
37	GND	Ι	Power Ground		Á
38	CLK	Ι	Clock Signal Input. Latching data at the rising edge.		
39	GND	Ι	Power Ground		>
40	GND	Ι	Power Ground	L OY	
			htt		

Rev: C

10. BLOCK DIAGRAM

11. QUALITY ASSURANCE

Test Item	Test Condition
High Temperature Operation	85°C (T _p) for 240 hours.
High Temperature and High Humidity Operation	60℃, 90%RH for 240 hours
Low Temperature Operation	$-30^{\circ}C(T_a)$ for 240 hours
High Temperature Storage	$85^{\circ}C(T_a)$ for 240 hours
Low Temperature Storage	$-40^{\circ}C(T_a)$ for 240 hours
Thermal Shock	-30℃(0.5Hr) ~ +85℃(0.5Hr) for 200 cycles
Mechanical Shock	Shock Level : 125G Waveform : Half sinusoidal Wave Shock Time : 2ms Number of Shocks : 3 times for each $\pm X$, $\pm Y$, $\pm Z$ direction
Vibration	Frequency Range:10Hz~500Hz Stoke: 1.3mm Sweep : 2.9G,33.3Hz~400Hz Cycle:15min Vibration: Sinusoidal Wave,4Hrs for Y direction.2Hrs for each direction of X, Y, Z

- Note1: The test samples have recovery time for 2 hours at room temperature before the function check. In the standard conditions, there is no display function NG issue occurred.
- Note2: All the cosmetic specifications are judged before the reliability stress.

Preliminary

CHIMEI 奇信電子 CHIMEI 奇信電子

12. OUTLINE DRAWING

Preliminary

13. PACKAGE INFORMATION

Preliminary

Doc. No.

CHIMEI 奇信電子

14. PRECAUTIONS

Please pay attention to the following when you use this TFT LCD module.

14.1 MOUNTING PRECAUTIONS

- (1) You must mount a module using arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
 And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are determined to the polarizer)
- (7) When the surface becomes dusty, please wipe gently with adsorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

14.2 OPERATING PRECAUTIONS

- The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.

14.3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

14.4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

14.5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

14.6 HANDLING PRECAUTIONS FOR PROTECTION FILM

(1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically

grounded and with well ion-blown equipment or in such a condition, etc.

- (2) The protection film is attached to the polarizer with a small amount of glue. Is apt to remain on the polarizer. Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.