PREPARED BY: DATE	SHARP	SPEC No.	LCP-1114002A
		FILE No.	
APPROVED BY: DATE	DISPLAY DEVICE BUSINESS DIVISION SHARP CORPORATION	ISSUE	24.Jan.2014
	JHARE CORPORATION	PAGE	30 Pages
		APPLICABLE D	IVISION
			T DEPARTMENT 1
		DISPLAY DEVI	CE UNIT 1
	SPECIFICATION		
	STEETTICATION		**************************************
(
	DEVICE SPECIFICATION for CGS Color LCD Module		
	$(720 \times \text{RGB} \times 1280 \text{ dots})$		
	Model No.		
	LS063K3SX54		
		')	
	DATE	1	
	PRESEN		1
		Att	Juis
DATE	<u>BY</u>		
DATE	KAZUO K	ITAURA	
DATE BY	KAZUO K Manager		IFNT 1
	KAZUO K Manager DEVELOF DISPLAY	MENT DEPARTM DEVICE UNIT 1	
	KAZUO K Manager DEVELOF DISPLAY DISPLAY	MENT DEPARTM	
	KAZUO K Manager DEVELOF DISPLAY DISPLAY	MENT DEPARTM DEVICE UNIT 1 DEVICE BUSINE	
	KAZUO K Manager DEVELOF DISPLAY DISPLAY	MENT DEPARTM DEVICE UNIT 1 DEVICE BUSINE	

	RECORDS OF R	EVISION	 DOC. First i Model No	0.	24. Jan.2014 LS063K3SX54
DATE	REF.PAGE PARAGRAPH DRAWING No.	REVISED NO.	Spec. No	MMARY	LCP-1114002A
24. Jan.2014			Firs	st Issue	

NOTICE

O These specification sheets are the proprietary product of SHARP CORPORATION (SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

O The application examples in these specification sheets are provided to explain the representative applications of the device and are not intended to guarantee any industrial property right or other rights or license you to use them. SHARP assumes no responsibility for any problems related to any industrial property right of a third party resulting from the use of the device.

O The device listed in these specification sheets was designed and manufactured for use in Telecommunication equipment (terminals)

O In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

O Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

O SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the

instructions and the precautions specified in these specification sheets.

O Contact and consult with a SHARP sales representative for any questions about this device.

[For handling and system design]

(1) Do not scratch the surface of the polarizer film as it is easily damaged.

(2) If the cleaning of the surface of the LCD panel is necessary, wipe it swiftly with cotton or other soft cloth. Do not use organic solvent as it damages polarizer.

(3) Water droplets on polarizer must be wiped off immediately as they may cause color changes, or other defects if remained for a long time.

(4) Since this LCD panel is made of glass, dropping the module or banging it against hard objects may cause cracks or fragmentation.

(5) Certain materials such as epoxy resin (amine's hardener) or silicone adhesive agent (de-alcohol or de-oxym) emits gas to which polarizer reacts (color change). Check carefully that gas from materials used in system housing or packaging do not hart polarizer.

(6) Liquid crystal material will freeze below specified storage temperature range and it will not get back to normal quality even after temperature comes back within specified temperature range. Liquid crystal material will become isotropic above specified temperature range and may not get back to normal quality. Keep the LCD module always within specified temperature range.

(7) Do not expose LCD module to the direct sunlight or to strong ultraviolet light for long time.

(8) If the LCD driver IC (COG) is exposed to light, normal operation may be impeded. It is necessary to design so that the light is shut off when the LCD module is mounted.

(9) Do not disassemble the LCD module as it may cause permanent damage.

(10) As this LCD module contains components sensitive to electrostatic discharge, be sure to follow the instructions in below.

① Operators

Operators must wear anti-static wears to prevent electrostatic charge up to and discharge from human body. (2) Equipment and containers

Process equipment such as conveyer, soldering iron, working bench and containers may possibly generate electrostatic charge up and discharge. Equipment must be grounded through 100Mohms resistance. Use ion blower.

③ Floor

Floor is an important part to leak static electricity which is generated from human body or equipment.

There is a possibility that the static electricity is charged to them without leakage in case of insulating floor, so the

Countermeasure (electrostatic earth: $1 \times 10^8 \Omega$) should be made.

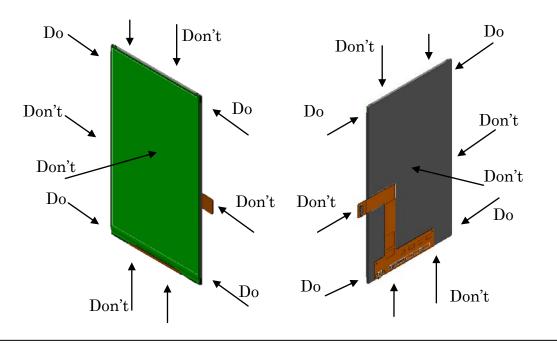
④Humidity

Proper humidity of working room may reduce the risk of electrostatic charge up and discharge. Humidity should be kept over 50% all the time.

⑤Transportation/storage

Storage materials must be anti-static to prevent causing electrostatic discharge.

60thers


Protective film is attached on the surface of LCD panel to prevent scratches or other damages. When removing this protective film, remove it slowly under proper anti-ESD control such as ion blower.

(11) Hold LCD very carefully when placing LCD module into the system housing. Do not apply excessive stress or pressure to LCD module. Do not to use chloroprene rubber as it may affect on the reliability of the electrical interconnection.

(12) Do not hold or touch LCD panel to flex interconnection area as it may be damaged.

(13) As the binding material between LCD panel and flex connector mentioned in 12) contains an organic material, any type of organic solvents are not allowed to be used. Direct contact by fingers is also prohibited.

(14) When carrying the LCD module, place it on the tray to protect from mechanical damage. It is recommended to use the conductive trays to protect the CMOS components from electrostatic discharge. When holding the module, hold the Plastic Frame of LCD module so that the panel, COG and other electric parts are not damaged.

(15) Do not touch the COG's patterning area. Otherwise the circuit may be damaged.

(16) Do not touch LSI chips as it may cause a trouble in the inner lead connection.

(17) Place a protective cover on the LCD module to protect the glass panel from mechanical damages.

(18) LCD panel is susceptible to mechanical stress and even the slightest stress will cause a color change in background. So make sure the LCD panel is placed on flat plane without any continuous twisting, bending or pushing stress.

(19) Protective film is placed onto the surface of LCD panel when it is shipped from factory. Make sure to peel it off before assembling the LCD module into the system. Be very careful not to damage LCD module by electrostatic discharge when peeling off this protective film. Ion blower and ground strap are recommended.

(20) Make sure the mechanical design of the system in which the LCD module will be assembled matches specified viewing angle of this LCD module.

(21) This LCD module does not contain nor use any ODS (1,1,1-Trichloroethane, CCL4) in all materials used, in all production processes.

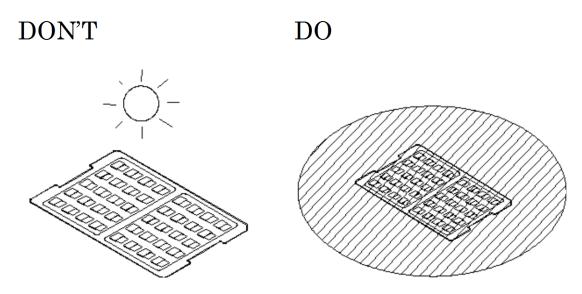
[For operating LCD module]

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) At the shipment, adjust the contrast of each LCD module with electric volume. LCD contrast may vary from panel to panel depending on variation of LCD power voltage from system.

(3) As opt-electrical characteristics of LCD will be changed, dependent on the temperature, the confirmation of display quality and characteristics has to be done after temperature is set at 25 °C and it becomes stable.

[Precautions for Storage]


(1) Do not expose the LCD module to direct sunlight or strong ultraviolet light for long periods. Store in a dark place.

(2) The liquid crystal material will solidify if stored below the rated storage temperature and will become an isotropic liquid if stored above the rated storage temperature, and may not retain its original properties. Only store the module at normal temperature and humidity $(25\pm5^{\circ}C,60\pm10\%RH)$ in order to avoid exposing the front polarizer to chronic humidity.

(3) Keeping Method

a. Don't keeping under the direct sunlight.

b. Keeping in the tray under the dark place.

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) Be sure to prevent light striking the chip surface.

[Other Notice]

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) As electrical impedance of power supply lines (VDD-GND) are low when LCD module is working, place the de-coupling capacitor nearby LCD module as close as possible.

(3) Reset signal must be sent after power on to initialize LSI. LSI does not function properly until initialize it by reset signal.

(4) Generally, at power on, in order not to apply DC charge directly to LCD panel, supply logic voltage first and initialize LSI logic function including polarity alternation. Then supply voltage for LCD bias. At power off, in order not to apply DC charge directly to LCD panel, execute Power OFF sequence and Discharge command.

(5) Don't touch to FPC surface, exposed IC chip, electric parts and other parts, to any electric, metallic materials.

(6) No bromide specific fire-retardant material is used in this module.

(7) Do not display still picture on the display over 2 hours as this will damage the liquid crystal.

(8) The connector used in this LCD module is the one Sharp have not ever used.

Therefore, please note that the quality of this connector concerned is out of Sharp's guarantee.

[Precautions for Discarding Liquid Crystal Modules]

COG: After removing the LSI from the liquid crystal panel, dispose of it in a similar way to circuit boards from electronic devices.

LCD panel: Dispose of as glass waste. This LCD module contains no harmful substances. The liquid crystal panel contains no dangerous or harmful substances. The liquid crystal panel only contains an extremely small amount of liquid crystal (approx.100mg) and therefore it will not leak even if the panel should break.

-Its median lethal dose (LD50) is greater than 2,000 mg/kg and a mutagenetic (Aims test: negative) material is employed.

FPC: Dispose of as similar way to circuit board from electric device.

PAGE

1. Application

This data sheet is to introduce the specification of LS063K3SX01 active matrix 16,777,216 color LCD module. Main color LCD module is controlled by Driver IC (NT35596J).

If any problem occurs concerning the items not stated in this specification, it must be solved sincerely by both parties after deliberation.

As to basic specification of driver IC refer to the IC specification and handbook.

2. Construction and Outline

Construction: LCD panel, Driver (COG), FPC with electric components,

14 White LED lump, prism sheet, diffuser, light guide and reflector,

plastic frame and metal frame to fix them mechanically.

Outline: See page 24

Connection: B to B connector (HIROSE ELECTRIC, BM10NB(0.8)-40DS-0.4V 40 pins, 0.4mm pitch) There shall be no scratches, stains, chips,

distortions and other external drawbacks that may affect the display function.

Rejection criteria shall be noted in Inspection Standard (T.B.D)

In order to realize thin module structure, double-sided adhesive tapes are used to fix LCD panels.

As these tapes do not guarantee to permanently fix the panels,

LCD panel may rise from the module when shipped from factory.

So please make sure to design the system to hold the edges of LCD panel by the soft material such as sponge when LCD module is assembled into the cabinet.

3. Mechanical Specification

Р	arameter	Specifications	Unit
Outline of	dimensions (typ)	81.7 (W)×146.95(H)×1.612 (D) (mm)	mm
Main LCD	Active area	78.3(W)×139.2(H)	mm
Panel	Display format	720(W)×RGB×1280(H)	-
	Dot pitch	0.03625 (W) ×0.10875 (H)	mm
	Base color *1	Normally Black	-
	Mass	Тур42.6 g	g

T-1-1- 1

*1 Due to the characteristics of the LC material, the colors vary with environmental temperature.

4. Absolute Maximum Ratings

(4-1) Electrical absolute maximum ratings

		Table 2			Ta= 25 °C
Parameter	Symbol	Min	Мах	Unit	Remark
	IOVDD	0	+5.5	V	GND=0V
Supply voltage	AVDD+	0	+6.5	V	GND=0V
	AVDD-	0	-6.5	V	GND=0V

Note1) If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operated with the absolute maximum ratings for a long time, its reliability may drop. It is not allowed for any of these ratings to be exceeded.

Make sure all the design characteristics are adequate before the panel is initialed.

(4-2) Environment Conditions

Table 3								
Item	То	р	Ts	tg	Remark			
	MIN.	MAX.	MIN.	MAX.				
Ambient temperature	-20 °C	+60°C	-30 °C	+70°C				

Note1) As opt-electrical characteristics of LCD will be changed, dependent on the temperature,

the confirmation of display quality and characteristics has to be done after temperature is set at $25^{\circ}C$ and it becomes stable.

Be sure not to exceed the rated voltage, otherwise a malfunction may occur.

Note2) Ta < 40° C 85%RH max.

 $Ta > 40^{\circ}C$ Absolute humidity must be lower than the humidity of 85%RH at 40°C.

5. Electrical Specifications

(5-1) Electrical characteristics

			<u>Table</u>	<u>4</u>		٦	a=25	°C, GND=0V
Paramete	er	Symbol	Conditions	Min.	Тур.	Max.	Unit	Applicable Pin
		IOVDD	(note 1)	1.7	1.8	1.9	V	
Supply volta	ade	AVDD+	(note 1)	4.9	5.0	5.1	V	
	-9-	AVDD-	(note 1)	-5.1	-5.0	-4.9	V	
Power consum	notion	I _{IOVDD}		-	29	36	mA	
(All white pat	-	I _{AVDD+}		-	7	9	mA	
		I _{AVDD-}		-	-8	-10	mA	
Frame freque	ency	F	(note 2)	-	60	-	Hz	
Input Signal	H Level	VIH		0.8xIOVDD	-	IOVDD	V	
Voltage	L Level	VIL		0	-	0.2xIOVDD	V	
Output Signal	H Level	V _{CH}		0.8xIOVDD	-	IOVDD	V	
Voltage	L Level	V _{CL}		0	-	0.2xIOVDD	V	

(Note 1) Ta=-20~65°C.

The operation is guaranteed under the recommended operating conditions only. The operation is not guaranteed if a quick voltage change occurs during operation. To prevent noise, a bypass capacitor must be inserted into the line close to power pin. Please make sure all the design settings are used within this range before the panel is initialed.

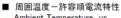
(Note 2) Please make sure that DC is not supplied to LCD for long period.

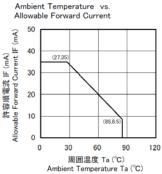
PAGE

(5-2) LED back light

(1) At main panel the back light uses 14pcs edge light type white LED.

			<u>Table</u>	<u>5</u>			
Parameter	Conditions	Symbol	Min.	Тур.	Max.	Unit	Remark
Forward current	Ta=25 °C	I _{LED}	-	20*1	-	mA	LEDA-LEDC


LED lamp: NSSW206C (NICHIA)


([Luminous Intensity rank]: NW775~NW825 [Color rank]: Sa62)

*1 per one piece of LED

*Please consider Allowable Forward Current on used temperature

(refer to Ambient Temperature vs. Allowable Forward Current curve)

		Rank	Sa62	
х	0.288	0.282	0.291	0.296
у	0.262	0.272	0.287	0.276

* Forward Voltage Measurement allowance is ± 0.05 V.

* Luminous flux value is traceable to the CIE 127:2007-compliant national standards. The measurement value of this product is different from the one of the products measured using the previous reference standards.

* Please refer to CIE 1931 chromaticity diagram.

Fig.1 LED Characteristic(De-rating Curve)

(1) Absolute Maximum Ratings

Item	Symbol	Absolute Maximum Rating	Unit
Forward Current	IF	35	mA
Pulse Forward Current	I _{FP}	100	mA
Reverse Voltage	V _R	5	v
Power Dissipation	PD	115	mW
Operating Temperature	Topr	-30~85	°C
Storage Temperature	T _{stg}	-40~100	°C
Junction Temperature	T,	105	°C

* Absolute Maximum Ratings at T₄=25°C.

* I_{FP} conditions with pulse width ${\leq}10\text{ms}$ and duty cycle ${\leq}10\%.$

(2) Initial Electrical/Optical Characteristics

Item		Symbol	Condition	Тур	Unit
Forward Voltage		VF	I _F =20mA	3.0	v
Reverse Current		IR	$V_R = 5V$	-	μA
Luminous Flux		Φv	I _F =20mA	8.0	Im
Luminous Intensity		Iv	I _F =20mA	2.6	cd
Characticity Coordinate	x	-	I _F =20mA	0.300	
Chromaticity Coordinate	y		I _F =20mA	0.295	-

* Characteristics at $T_A=25^{\circ}C$.

* Luminous Flux value as per CIE 127:2007 standard.

* Chromaticity Coordinates as per CIE 1931 Chromaticity Chart.

(3)	Ranking					(Ta	=25℃)
	Ite	em	Symbol	Condition	Min.	Max.	Unit
	Luminous	Rank NW775			7.75	8.00	
	Flux	Rank NW825	φν	If=20[mA]	8.25	8.50	lm

* Luminous Flux Measurement allowance is ± 7%.

(5-3) Interface signals

Pin No	Symbol	Description	1/0	Remarks
1	CN2-2	CN2-2		Komanto
2	CN2-7	CN2-7		
3	CN2-3	CN2-3		
4.	GND	GND level pin	-	
5	CN2-4	CN2-4	-	
6	LED PWM	Display brightness control	0	
7	CN2-5	CN2-5	-	
8	GND	GND level pin	-	
9	CN2-6	CN2-6		
10	D3_N	MIPI data signal line (-)	1/0	
11	GND	GND level pin	-	
12	D3_P	MIPI data signal line (+)	1/0	
13	AVDD-	Power supply for analog	-	
14	GND	GND level pin	-	
15	AVDD+	Power supply for analog	-	
16	D0_N	MIPI data signal line (-)	1/0	
17	IOVDD	Power supply for I/O		
18	D0_P	MIPI data signal line (+)	1/0	
19	VGH	Positive Gate Driver Output Voltage	0	
20	GND	GND level pin	-	
21	NC	NC	-	
22	CLK_N	MIPI clock signal line (-)	1	
23	GND	GND level pin	-	
24	CLK_P	MIPI clock signal line (+)	1	
25	RST	Reset enable pin	1	
26	GND	GND level pin	-	
27	GND	GND level pin	-	
28	D1_N	MIPI data signal line (-)	I/O	
29	LED-A	LED anode	-	
30	D1_P	MIPI data signal line (+)	1/0	
31	LED-A	LED anode	-	
32	GND	GND level pin	-	
33	LED-C1	LED cathode1	-	
34	D2_N	MIPI data signal line (-)	1/0	
35	LED-C1	LED cathode1	-	
36	D2_P	MIPI data signal line (+)	I/O	
37	LED-C2	LED cathode2	-	
38	GND	GND level pin	-	
39	LED-C2	LED cathode2	-	
40	GND	GND level pin	-	

Mountedconnector: 40pins; 0.4mm pitch; B to B connector. (HIROSE - BM10NB(0.8)-40DS-0.4V)Corresponded connector: 40pins; 0.4mm pitch; B to B connector. (HIROSE - BM10B(0.8)-40DP-0.4V)Signals connect to LCD module. Symbols correspond able to Circuit diagram in Page 11.

(5-3)) Interface	signals

Pin No	Symbol	Description	1/0	Remarks
PITINO	,		1/0	Reifidiks
1	GND	GND level pin	-	
2	CN2-2	CN2-2	I	
3	CN2-3	CN2-3	I	
4.	CN2-4	CN2-4	-	
5	CN2-5	CN2-5	-	
6	CN2-6	CN2-6	I	
7	CN2-7	CN2-7	I	
8	HSYNC	Horizontal scan signal	0	

Mounted connector : 8pins; 0.25mm pitch; Zif connector. (FUJIKURA DDK- FF28-8A-R11A-3H-D3) Signals connect to LCD module. Symbols correspond able to Circuit diagram in Page 11.

(5-4) Schematic of LCD module system

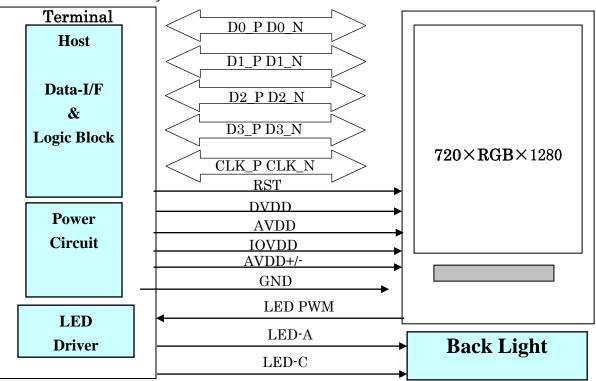
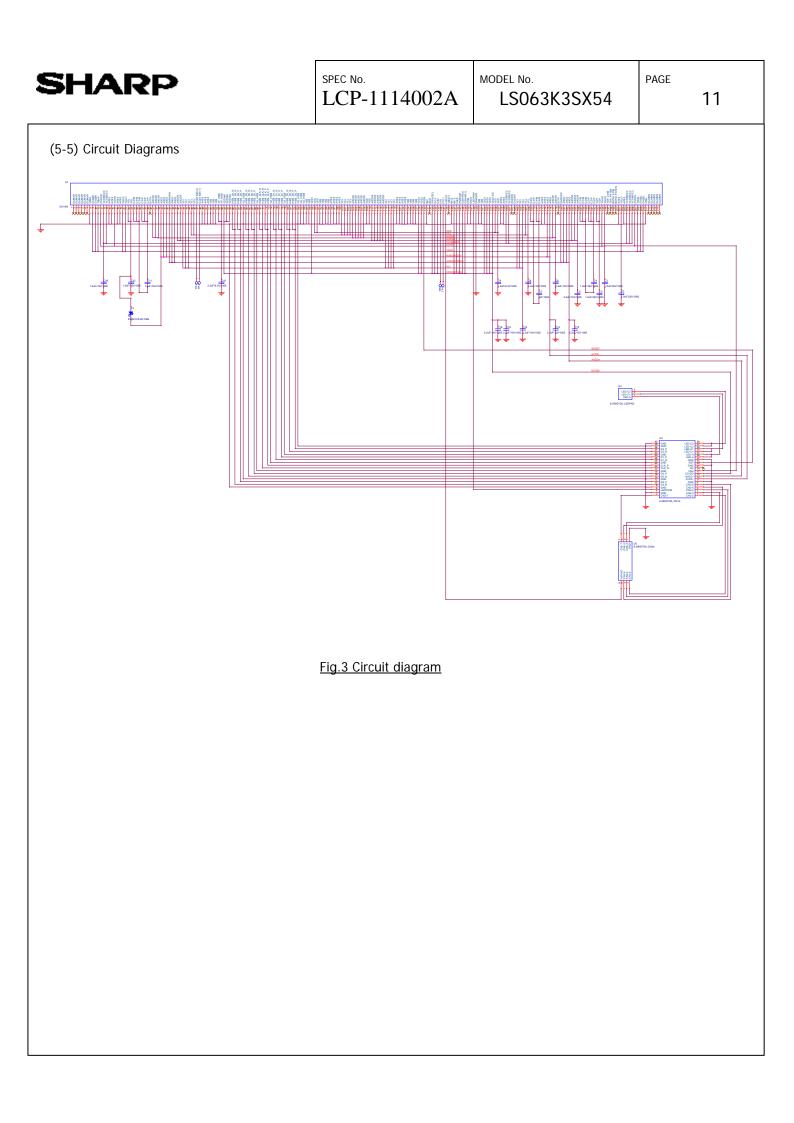
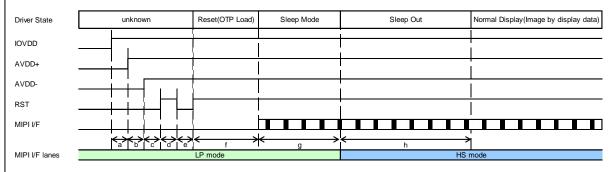



Fig.2 Schematic of LCD module system

<u>(5-6) Parts L</u>	i <u>st</u>					
				<u>Table</u>	<u>e 7</u>	
Category	Ref. No.		Spec			Vendor
	C1	1.0uF	25V	1005		Multi Vender
	C2	1.0uF	25V	1005		Multi Vender
	C3	1.0uF	25V	1005		Multi Vender
	C4	1.0uF	16V	1005		Multi Vender
	C5	2.2uF	10V	1005		Multi Vender
	C6	2.2uF	10V	1005		Multi Vender
	C7	NC				
	C8	2.2uF	10V	1005		Multi Vender
Capacitor	C9	2.2uF	6.3V	1005		Multi Vender
Capacitor	C10	2.2uF	6.3V	1005		Multi Vender
	C11	1.0uF	16V	1005		Multi Vender
	C12	1.0uF	25V	1005		Multi Vender
	C13	2.2uF	10V	1005		Multi Vender
	C14	2.2uF	10V	1005		Multi Vender
	C15	2.2uF	10V	1005		Multi Vender
	C16	2.2uF	10V	1005		Multi Vender
	C18	1.0uF	10V	1005		Multi Vender
	C19	2.2uF	10V	1005		Multi Vender
Diode	D1	VF<0.4V V	′R≧max	.30V		ROHM
Connector	CN1	0.4mm pit	ch、40Pir	า		HIROSE ELECTRIC
Connector	CN2	0.25mm p	itch、8Pir	า		FUJIKURA DDK

SHARP	SPEC NO. LCP-1114002A	MODEL No. LS063K3SX54	PAGE 13
(5-7)FPC Artwork			
	Fig. 4 Layer 1		
	<u>rig. 4 Layer i</u>		

SHARP	SPEC NO. LCP-1114002A	MODEL No. LSO63K3SX54	page 14
5-7)FPC Artwork			
	Fig. 5 Layer 2		


6. Initial Sequence

Power On Sequence

Та	b	le	8

					Recommen	ded Power On Sequ	uence		
Step	Address	Parameter	Data	DSI da	ata type	Delay	Command	MIPI LP/HS	Term
	Initial condition						XRES = L		
2	Power Supply IO	VDD (Typ1.8V) Or	ı				IOVDD ON		
	Wait					Min.>0ms	Wait until power stable		а.
		/DD+ (Typ5.0V) O	n				AVDD+ ON		
	Wait					Min.>0ms			b.
		/DD- (Typ-5.0V) O	'n				AVDD- ON		
	Wait					Min.10ms			С.
	RESET High						RST = H		
	Wait					Min.10 us			d.
	RESET Low						RST = L		
	Wait	Vait		Min.10 us			e.		
	RESET High						RST = H		
	Wait					Min.10ms	[Automatic] OTP Auto load		f.
14							[Automatic] Sleep Mode On		g.
15		l, please add initia	I command in her						9.
16	CMD1_11h	-	-	DCS	39h		Sleep Out	LP/HS	
	Wait					Min. 100ms			h.
18							[Automatic] Sleep Mode Off		
19	CMD1_29h	-	-	DCS	39h		Display On	LP/HS	
20	Host Display Data	a transfer					Image Write(Send Video Stream Packet)	HS	
	Wait					Min.40ms			i.
22							[Automatic] Display On		
	Backlight On								
24	Normal Display								

Table 9

6. Initial Sequence

Power Off Sequence

					Tab	<u>e 10</u>				
Recommended Power Off Sequence										
Step	Address	Parameter	Data	DSI da	ata type	Delay	Command	MIPI LP/HS	Term	
1	Normal Display									
2	Backlight Off								j.	
1	CMD1_28h	-	-	DCS	39h		Display Off	LP/HS	k.	
2	Wait					Min.4 frame			к.	
3	CMD1_10h	-	-	DCS	39h		Sleep In(* Note)	LP/HS		
4	Wait					Min. 60 ms or Wait Min 4frame			· ·	
7	Power Supply AV	DD- (Typ-5.0V) Of	F				AVDD- Off		m.	
8	Wait					Min.0ms				
9	Power Supply AV	DD+ (Typ5.0V) Of	f				AVDD+ Off			
10	Wait					Min.0ms			n.	
11	Power Supply IO	VDD (Typ1.8V) Off					IOVDD Off		0.	
12	RESET Low						RST=L		р.	

Table 11 Driver State Normal Display(Image by display data) Sleep In unknown I IOVDD AVDD+ AVDD-RST Video data Display Off Sleep In MIPI I/F →<mark>< →< →< →</mark> į. k. ١. MIPI I/F lanes HS mode

7. Mipi 4lane / 24 Bit color Setting

Table 12									
Contents	Symbol	Condition	Min	Тур	Мах	Unit			
Horizontal low pulse width	HS			7		CLK			
Horizontal front porch	HFP			213		CLK			
Horizontal back porch	HBP			133		CLK			
Horizontal active area	HDISP		720			Line			
Verticle low pulse width	VS		(2)			Line			
Vertical front porch	VFP			8		Line			
Vertical back porch	VBP					Line			
Vertical data start point	[VS+VBP		8		Line			
Vertical active area	VDISP		1280			Line			
Vertical Refresh rate	VRR		57 60 63			Hz			
Mipi Lane			4			lane			
Mipi Speed			475	500	525	Mbps			

7. Mipi 4lane / 24 Bit color Setting

Table 13

Symbol	Parameter	Min	Тур	Max	Uni
	Power and Operation Voltage	for MIPI Receiver			
VDDAM	Power supply voltage for MIPI RX	1.7	1.8	3.6	v
VP_HSSI	High speed / Low power mode operating voltage		1.2		v
	MIPI Characteristics for High S	Speed Receiver	-		-
VILHS	Single-ended input low voltage	-40			m\
VIHHS	Single-ended input high voltage			460	m\
VCMRXDC	Common-mode voltage	70		330	m\
ZID	Differential input impedance	80	100	125	ohr
[VOD]	HS transmit differential voltage (VOD=VDP-VDN)	140	200	250	m\
VIDTH	Different input high threshold			70	m\
VIDTL	Different input low threshold	-70			m\
V _{term-en}	Single-ended threshold for HS termination enable			450	m\
	MIPI Characteristics for Lo	w Power Mode			
VI	Pad signal voltage range	-50		1350	m\
VGNDSH	Ground shift	-50		50	m\
VIL	Logic 0 input threshold	0.0		550	m\
VIH	Logic 1 input threshold	880		VDDAM	m\
VHYST	Input hysteresis	25			m\
VOL	Output low level	-50		50	m\
VOH	Output high level	1.1	1.2	1.3	v
ZOLP	Output impedance of Low Power Transmitter	80	100	125	ohr
VIHCD,MAX	Logic 0 contention threshold	0.0		200	m\
VILCD.MIN	Logic 1 contention threshold	450		VDDAM	m\

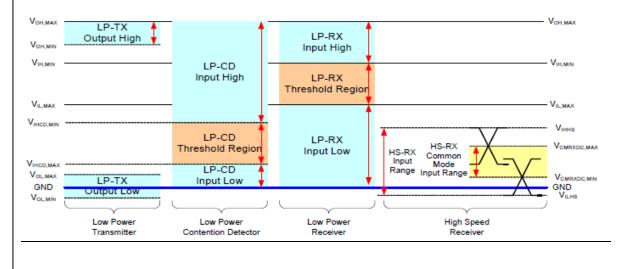
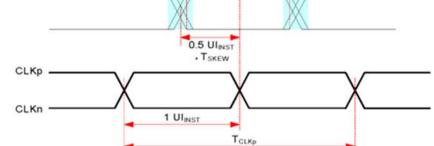



Fig. 6 Mipi 4lane / 24 Bit color Setting

18

SHARP	SPEC NO. LCP-1114002A	MODEL NO. LS063K3SX54	PAGE 19
7. Mipi 4lane / 24 Bit color Setting			
AC CHARACTERISTICS MIPI Interface Characteristics High Speed Data Transmission: Data-Clock Timing	TSETUP THOLD		

Parameter	Symbol	Min	Тур	Max	Units	Notes
UI instantaneous	Ulaust	1.8		12.5	ns	1,2,7
Data to Clock Skew [measured at tansmitter]	T _{9-EN} [TX]	-0.15		0.15	Uliver	3
Data to Clock Setup Time [measured at receiver]	TSETUP[RX]	-0.15		0.15	Ulivest	4
Data to Clock Hold Time [measured at reciever]	T _{HOLD} [RX]	-0.15		0.15	Uloost	4
20% - 80% rise time and fall time	5/5	100			ps	6
20% - 60% rise time and fail time	6.76			0.3	Ulivist	5

Note:

1. This value corresponds to a minimum 80 MHz data rate.

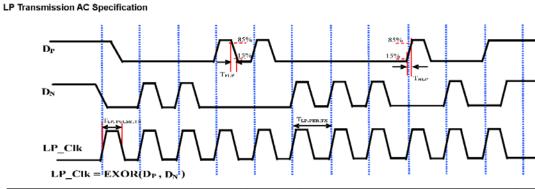
2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.

3. Total silicon and package delay budget of 0.3* UIINST when D-PHY is supporting maximum data rate = 550Mbps.

4. Total setup and hole window for receiver of 0.3* UIINST when D-PHY is supporting maximum data rate = 550Mbps.

5. Applicable when operating at HS bit rates \leq 550Mbps (UI \geq 1 ns).

6. Applicable for all HS bit rates. However, to avoid excessive radiation, bit rates ≤ 1 550Mbps (UI ≥ 1 ns), should not use values below 100 ps.


7. For MIPI speed limitation:

[1] Per lane bandwidth is 550Mbps.

[2] Total Bit Rate: 2.2Gbps for 8-8-8

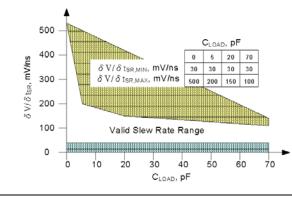
7. Mipi 4lane / 24 Bit color Setting

Parameter		Symbol	Min	Тур	Max	Units	Notes
15%-85% rise	15%-85% rise time and fall time				25	ns	1
30%-85% rise	30%-85% rise time and fall time				35	ns	1,5,6
Pulse width of the LP exclusive-OR clock		TLP-PULSE-TX	40			ns	4
	All other pulses		20			ns	4
Period of the LP	Period of the LP exclusive-OR clock		90			ns	
Slew Rate@	Slew Rate@ C _{LOAD} = 0pF Slew Rate@ C _{LOAD} = 5pF		30		500	mV/ns	1,2,3,7
Slew Rate@			30		200	mV/ns	1,2,3,7
Siew Rate@ CLOAD = 20pF		ō∨/ōt _{sR}	30		150	mV/ns	1,2,3,7
Slew Rate@	Slew Rate@ CLOAD = 70pF		30		100	mV/ns	1,2,3,7
Load Capacitance		CLOAD			70	pF	1

Note:

 CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.

2. When the output voltage is between 15% and below 85% of the fully settled LP signal levels.

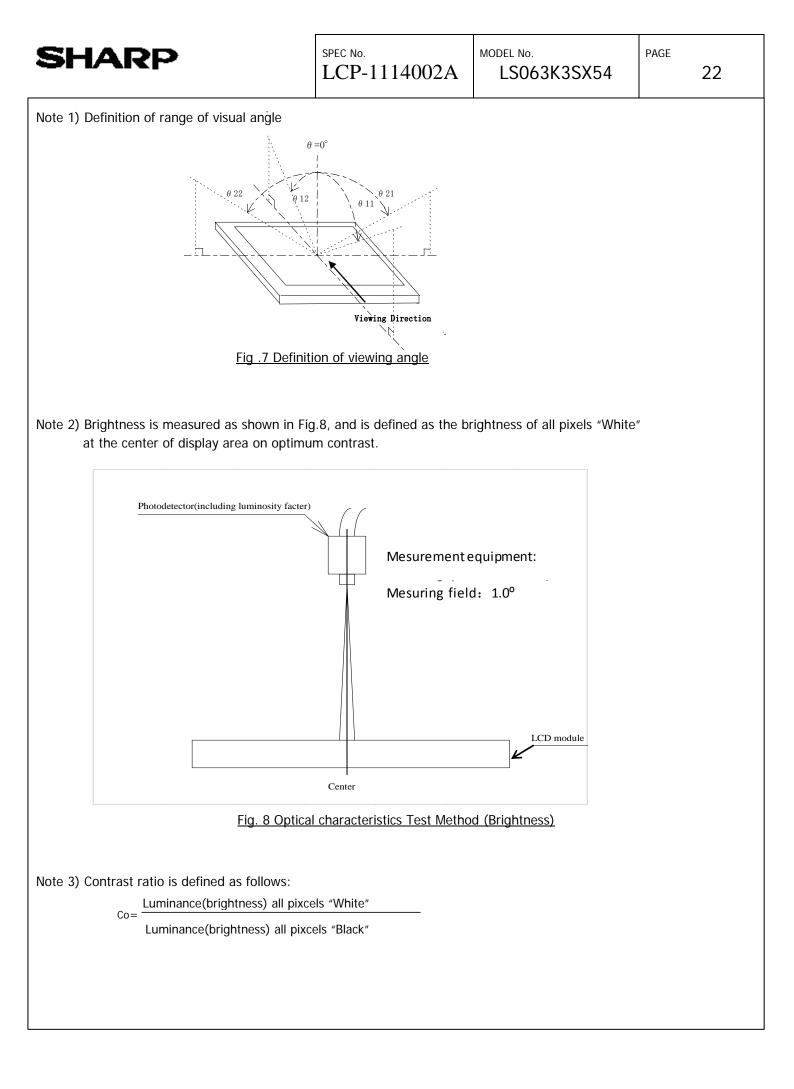

3. Measured as average across any 50 mV segment of the output signal transition.

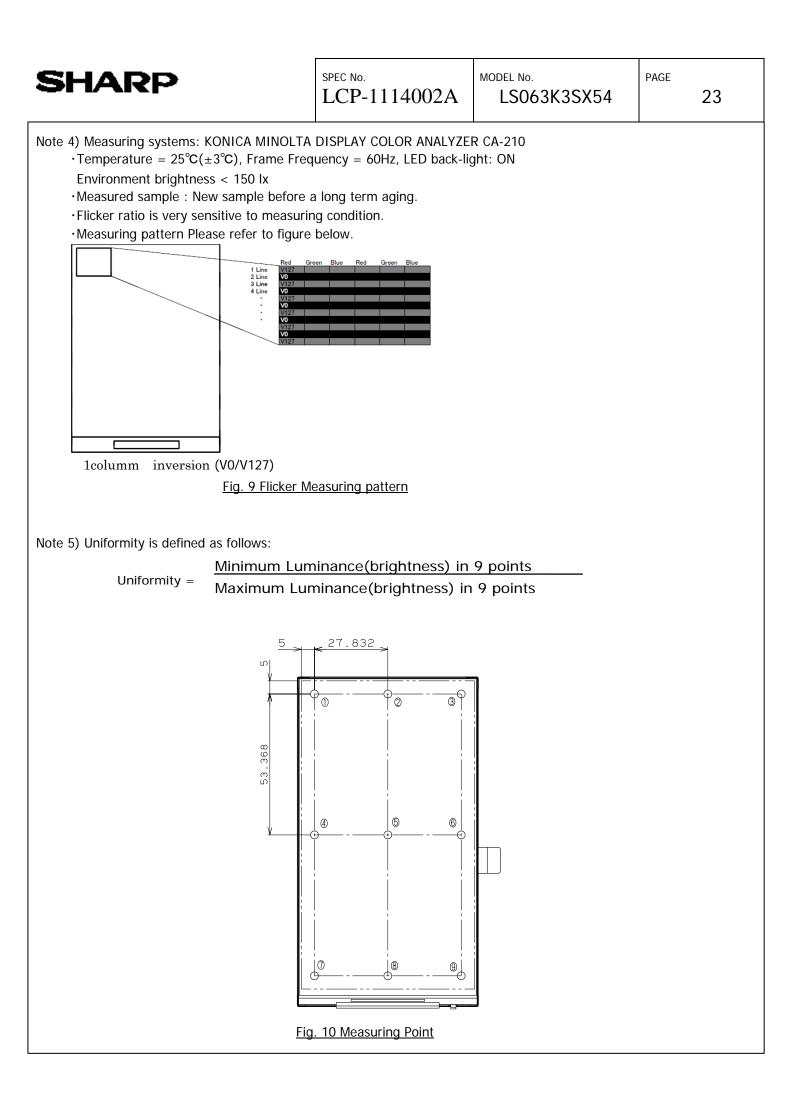
4. This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior.

5. The rise-time of TREOT starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the differential drive.

6. With an additional load capacitance CCM between 0-60pF on the termination center tap at RX side of the Lane.

7. This value represents a corner point in a piecewise linear curve as bellowed.





9. Optical Characteristics

Table 14

						ILED=20	OmA/pcs, Ta = 25°	
Optical Characteristics								
Parameter	symbol	condition	MIN	ТҮР	MAX	unit	Remark	
Brightness	Br	θ=0°	360	450	-	cd/mੈ	Note1,2	
Contrast	Со	θ=0°	700	1000	-		Note1,3	
Viewing Angle	θ11	Co > 5	80	85	-	deg	Note1	
	θ12		80	85	-			
	θ21		80	85	-			
	θ22		80	85	-			
White chromaticity	х	θ=0°	0.25	0.30	0.35		Note.1,3	
	у]	0.27	0.32	0.37			
Red chromaticity	х	θ=0°	0.59	0.64	0.69			
-	v		0.28	0.33	0.38			
Green chromaticity	х	θ=0°	0.255	0.305	0.355			
	v		0.574	0.624	0.674			
Blue chromaticity	х	θ=0°	0.10	0.15	0.20			
	v		0.01	0.06	0.11			
Uniformity	-	θ=0°	80	-	-	%	Note.5	
NTSC ratio	-	θ=0°	69	74	-	%	Note.1,3	
Flicker ratio	-	*1	-	-	15	%	Note.4	

10. Reliability

	Table.15							
No.	Test	Condition		Judgment criteria				
1	Temperature Cycling	$-20^{\circ}C \rightarrow 70^{\circ}C \rightarrow -20^{\circ}C \dots$		Per table in below				
		60min (3min) 60min (3min) 60min 5	cycle					
2	High Temp. Storage	Ta=70°C	240h	Per table in below				
3	Low Temp. Storage	Ta=-30°C	240h	Per table in below				
4	Humidity Operation	Ta=40°C 95%RH	240h	Per table in below				
				(polarizer discoloration is				
				excluded)				
5	High Temp. Operation	Ta=60°C	240h	Per table in below				
6	Low Temp. Operation	Ta=-20°C	240h	Per table in below				
7	ESD	Discharge resistance: 0 Ω		Per table in below				
		Discharge capacitor: 200 pF						
		Discharge voltage: ±200 V Max						
		Discharge 1 time to each input line						
		* "GND" of display module is conne						
		GND of test system ground.						

*Ta = Ambient temperature

* Check items for other Test

In the standard condition, there shall be no practical problems that may affect the display function.

S	SHARP		SPEC NO. LCP-1114002A	MODEL NO. LSO63K3SX54	PAGE 25
11 <u>. F</u>	Packag	ing specifications			
		ails of packaging			
	1) Pac	kaging materials: Table.16			
		kaging style : Fig. 11			
(11-2	2) Packa	aging quantities			
	120 r	modules per master carton			
(11-	3) Pack	kaging weight			
	Abo	ut 10.7 kg			
(11-	4) Pack	caging outline dimensions			
	580	mm×365 mm×235 mm (H)			
(F	Packagi	ng materials)			
			Table.16		
		Parts name		Materials	
	1	Master carton	Corrugate card board		
	2	Inside sleeve	Corrugate card board		
1					

-		
3	Outside sleeve	Corrugate card board
4	Tray for packaging	Polystyrene with anti-static treatment + anti-static polystyrene
5	Protective bag	Polyethylene with anti-static treatment
6	OPP tape	Polypropylene
7	Bar code label	Anti-static polyethylene

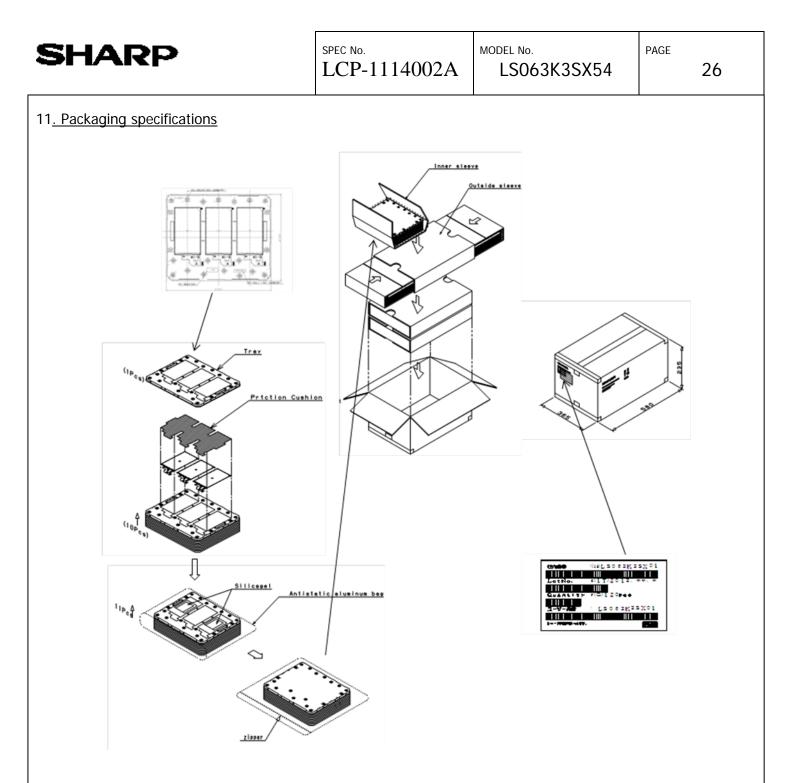
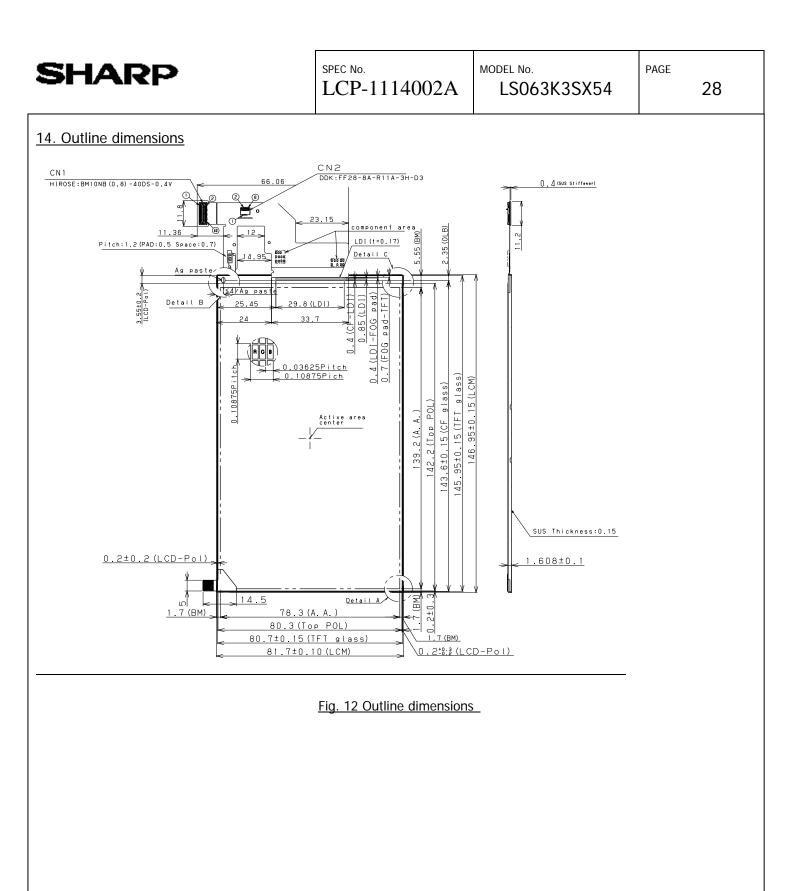



Fig.11 Packaging style

SHARP	SPEC NO. LCP-1114002A	MODEL No. LS063K3SX54	PAGE 27						
13. LCD Module Code Rule									
<u>LS</u> 063 K 3 S X 5 1 2 3 4 5 6	<u>4</u> D								
①Parts type : Co	GS LCD								
	29inch 20 format								
	ansmissive IPI DSI 4 Lane								
©Polarizer / LCD viewing type : C		gle							
⑦Serial Code									

