

SPECIFICATION FOR APPROVAL

() Preliminary Specification

(●) Final Specification

Title 42.0" WXGA TFT LCD	
--------------------------	--

BUYER	General
MODEL	

SUPPLIER	LG.Philips LCD Co., Ltd.
*MODEL	LC420W02
MODEL	B6

*When you obtain standard approval, please use the above model name without suffix

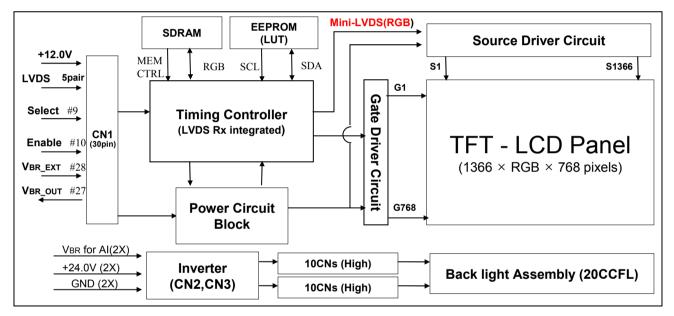
APPROVED BY SIGNATURE DATE	APPROVED BY SIGNATURE DATE
/	Jay Yoon/ G.Manager
	REVIEWED BY S. W Lee/ Manager
	S. W Kwag/ Engineer
Please return 1 copy for your confirmation with your signature and comments.	TV Products Development Dept. LG. Philips LCD Co., Ltd

CONTENTS

Number	Item	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	12
3-4	SIGNAL TIMING WAVEFORMS	13
3-5	COLOR INPUT DATA REFERENCE	14
3-6	POWER SEQUENCE	15
4	OPTICAL SPECIFICATIONS	17
5	MECHANICAL CHARACTERISTICS	21
6	RELIABILITY	24
7	INTERNATIONAL STANDARDS	25
7-1	SAFETY	25
7-2	EMC	25
8	PACKING	26
8-1	DESIGNATION OF LOT MARK	26
8-2	PACKING FORM	26
9	PRECAUTIONS	27
9-1	MOUNTING PRECAUTIONS	27
9-2	OPERATING PRECAUTIONS	27
9-3	ELECTROSTATIC DISCHARGE CONTROL	28
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	28
9-5	STORAGE	28
9-6	HANDLING PRECAUTIONS FOR PROTECTION FILM	28

RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
1.0	Apr, 20, 2005	-	Final Specification(Lead Free)
ļļ			
			0.00
Ver. 1.0			Apr. 20. 2005 3 / 28



1. General Description

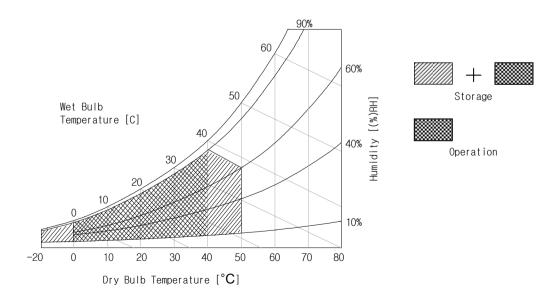
The LC420W02 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 42.0 inch diagonally measured active display area with WXGA resolution (768 vertical by 1366 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus presenting a palette of more than 16.7M(true) colors.

It has been designed to apply the 8-bit 1-port LVDS interface.

It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

Active Screen Size	42.02 inches(1067.308mm) diagonal
Outline Dimension	1006 mm(H) x 610 mm(V) x 56 mm(D) (Typ.)
Pixel Pitch	0.227mm x 0.681mm x RGB
Pixel Format	1366 horiz. by 768 vert. Pixels RGB stripe arrangement
Color Depth	8-bit, 16.7 M colors
Luminance, White	500 cd/m ² (Center 1-point) (Typ.)
Dynamic C/R (for AI)	1100:1 (Тур.)
Viewing Angle (CR>10)	Viewing Angle Free (R/L 178 (Typ.), U/D 178 (Typ))
Power Consumption	Total 167.56W (Typ.) (Logic=5.76W, Inverter=161.8W [I _{BL} =6.74mA])
Weight	11,800g (Typ.)
Display Operating Mode	Transmissive mode, normally black
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer


2. Absolute Maximum Ratings

The following items are maximum values which, if exceeded, may cause faulty operation or damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Symbol Va		Linit	Remark
Parame	lei	Symbol	Min	Max	Unit	Remark
Power Input	ower Input LCD circuit VLCD -0.3 +		+14.0	VDC	at 25 ± 2 °C	
Voltage	Inverter	VBL	21.6	+27.0	VDC	
Inverter Control ON/OFF		Voff/Von	-0.30	+5.25	VDC	
Voltage	Brightness	Vbr	0.0	+3.3	VDC	
Operating Temperat	Operating Temperature		0	+40	°C	
Storage Temperature		Тѕт	-20	+50	°C	Note 1
Operating Ambient Humidity		Нор	10	90	%RH	NOLE I
Storage Humidity	Storage Humidity		10	90	%RH	

Note 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water.

3. Electrical Specifications

3-1. Electrical Characteristics

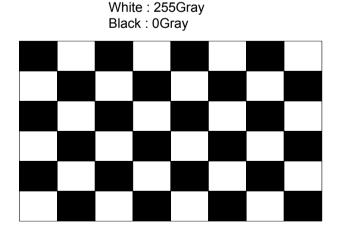

It requires two power inputs. One is employed to power for the LCD circuit. The other input power for the CCFL/Backlight is to power inverter.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol		Value	Unit	Note			
Farameter	Symbol	Min	Тур	Max	Unit	NOLE		
Circuit :	Circuit :							
Power Input Voltage	VLCD	11.4	12.0	12.6	VDC			
	ILCD	-	480	550	mA	1		
Power Input Current		-	655	750	mA	2		
Power Consumption	PLCD		5.76	6.60	Watt	1		
Rush current	Irush	-	-	3.0	А	3		

Note : 1. The specified current and power consumption are under the V_{LCD}=12.0V, $25 \pm 2^{\circ}$ C, f_V=60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

- 2. The current is specified at the maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power input is 1ms (min.).

Mosaic Pattern(8 x 6)

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Parameter		Symbol	Values			Unit	Notoo	
Pai	Parameter		Symbol	Min	Тур	Max	Unit	Notes
Inverter :								
Power Supply Inp	out Voltage		VBL	22.8	24.0	25.2	Vdc	
Power Supply Inp	out Voltage Ri	pple		-0.2		0.2	Vp-р	
Unloading Input V	/oltage					27.0	Vdc	1
Power Supply Inp	out Current		IBL	-	6.74	8.11	А	
Power Consumpt	ion		PBL	-	161.8	194.6	W	
Input Voltage for	Brightness	Adjust	VBR	0.0		3.3	Vdc	2
Control System	On/Off	On	V on	4.0	-	5.0	Vdc	
Signals	01/01	Off	V off	-0.3	0.0	0.5	Vdc	
Lamp :	Lamp :							
Life Time				50,000			Hrs	3

Notes :

1. Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 120 minutes at 25±2°C

The specified current and power consumption are under the typical supply Input voltage 24V and Vbr 3.3V, it is total power consumption.

The ripple voltage of the power supply input voltage is under 0.2 Vp-p.

LPL recommend Input Voltage is 24.0V \pm 5%.

2. Brightness Control.

This VBR Voltage control brightness.

VBR Voltage	Function
3.3V	Maximum Brightness (100%)
0V	Minimum Brightness.(40%)

3. The life is determined as the time at which luminance of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25 ± 2°C. Specified value is when lamp is aligned horizontally.

3-2. Interface Connections

This LCD module employs two interface connections, a 30-pin connector is used for the module electronics and two 12-pin connectors are used for the integral backlight system.

3-2-1. LCD Module

- LCD Connector(CN1) : FI-X30SSL-HF (Manufactured by JAE) or Equivalent
- Mating Connector : FI-X30C2L (Manufactured by JAE) or Equivalent

Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION

Pin No.	Symbol	Description	Note
1	VLCD	Power Supply +12.0V	
2	VLCD	Power Supply +12.0V	
3	VLCD	Power Supply +12.0V	
4	VLCD	Power Supply +12.0V	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	Select	Select LVDS Data format	1
10	Enable	Al Enable ('H' = Enable , 'L' = Disable)	
11	GND	Ground	
12	RA-	LVDS Receiver Signal(-)	
13	RA+	LVDS Receiver Signal(+)	
14	GND	Ground	
15	RB-	LVDS Receiver Signal(-)	
16	RB+	LVDS Receiver Signal(+)	
17	GND	Ground	
18	RC-	LVDS Receiver Signal(-)	
19	RC+	LVDS Receiver Signal(+)	
20	GND	Ground	
21	RCLK-	LVDS Receiver Clock Signal(-)	
22	RCLK+	LVDS Receiver Clock Signal(+)	
23	GND	Ground	
24	RD-	LVDS Receiver Signal(-)	
25	RD+	LVDS Receiver Signal(+)	
26	GND	Ground	
27	VBR_OUT	VBR output form LCD module	
28	VBR_EXT	External VBR input from System to LCD module	
29	GND	Ground	
30	GND	Ground	2

Note: 1. If Pin 9 is Ground, Interface format is "LG", and if Pin9 is Vcc(3.3V), Interface format is "DISM" See page 9 and 10.

- 2. Pin 30 should be ground, this pin is necessary for LCD test.
- 3. All GND(ground) pins should be connected together, which should be also connected to the LCD module's metal frame.
- 4. All VLCD (power input) pins should be connected together.
- 5. Input Level of LVDS signal is based on the IEA 664 Standard.

ſ

Table 5. REQUIRED SIGNAL ASSIGNMENT FOR LVDS TRANSMITTER (Pin9="L")

Host System 24 Bit	DS90C385 or Compatible	θ FI->	 (30SSL	-HF	Timing Controller
RED0	51	48			
RED1	52 TxOUT0-	40	12	100Ω ≷	RxIN0-
RED2	54 TxOUT0+	- 4/	13	100% >	RxIN0+
RED3	55				
RED4	56	46			
RED5	3 TxOUT1-	45	15	100Ω ≶	RxIN1-
RED6	50 TxOUT1+	- 40	16	100% >	RxIN1+
RED7	2				
GREEN0	4	42			
GREEN1	6 TxOUT2-	42	18	100Ω ≷	RxIN2-
GREEN2	7 TxOUT2+	- 41	19	100% 2	RxIN2+
GREEN3	11				
GREEN4	12				
GREEN5	14 TxCLKOUT-	40	21	4000 2	RxCLKIN-
GREEN6	8 TxCLKOUT	39	22	100요 ≶	RxCLKIN+
GREEN7	10				
BLUE0	15				
BLUE1		38	24	4000 <	RxIN3-
BLUE2	20 TxOUT3-	37	25	100요 ≶	RxIN3+
BLUE3	22				
BLUE4	23		9		LG / DISM
BLUE5	24		30		LCD Test
BLUE6	16				
BLUE7	18				
Hsync	27				
Vsync	28	<u> </u>	1		
Data Enable		GND			
CLOCK	31				lodule

Note: 1. The LCD Module uses a 100 $Ohm[\Omega]$ resistor between positive and negative lines of each receiver input.

- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (DS90C385 or Compatible)
- 3. '7' means MSB and '0' means LSB at R,G,B pixel data.

c

Table 6. REQUIRED SIGNAL ASSIGNMENT FOR LVDS TRANSMITTER (Pin9="H")

Host System 24 Bit	DS90C385 or Compatible	FI-X30SS	SL-HF	Timing Controller
RED0 RED1 RED2 RED3	50 2 TxOUT0- 51 TxOUT0+ 52	48 12 47 13	100Ω ≶	RxIN0- RxIN0+
RED4 RED5 RED6 RED7	54 55 TxOUT1- 56 TxOUT1+ 3	46 45 15 16	100Ω ≶	RxIN1- RxIN1+
GREEN0 GREEN1 GREEN2 GREEN3	8 10 TxOUT2- 4 TxOUT2+ 6	42 41 18 19	<u>100Ω ≶</u>	RxIN2- RxIN2+
GREEN4 GREEN5 GREEN6 GREEN7	7 11 TxCLKOUT- 12 TxCLKOUT+ 14	40 39 21 22	<u>100Ω ≶</u>	RxCLKIN- RxCLKIN+
BLUE0 BLUE1 BLUE2 BLUE3	16 18 TxOUT3- 15 TxOUT3+ 19	38 24 37 25	<u>100Ω ≶</u>	RxIN3- RxIN3+
BLUE4 BLUE5 BLUE6 BLUE7	20 22 23 24	9 30		LG / DISM LCD Test
Usync Usync Data Enable CLOCK	27 28 30 31	GND	LCD M	odule

Note: 1. The LCD module uses a 100 $Ohm[\Omega]$ resistor between positive and negative lines of each receiver input.

- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (DS90C385 or Compatible)
- 3. '7' means MSB and '0' means LSB at R,G,B pixel data.

3-2-2. Backlight Inverter

- Inverter Connector : S12B-PH-SM3(manufactured by JST) or Equivalent
- Mating Connector : PHR-12 or Equivalent

Table 7. INVERTER CONNECTOR PIN CONFIGULATION

Pin No	Symbol	Description	Remarks
1	VBL	Power Supply + 24V	
2	VBL	Power Supply + 24V	
3	VBL	Power Supply + 24V	
4	VBL	Power Supply + 24V	
5	VBL	Power Supply + 24V	
6	GND	POWER GND	
7	GND	POWER GND	
8	GND	POWER GND	Note 1
9	GND	POWER GND	
10	GND	POWER GND	
11	Vbr	0V ~ 3.3V	Note 2
12	On/Off	0V ~ 5.0V	Note 3

Notes: 1. GND is connected to the LCD module metal frame.

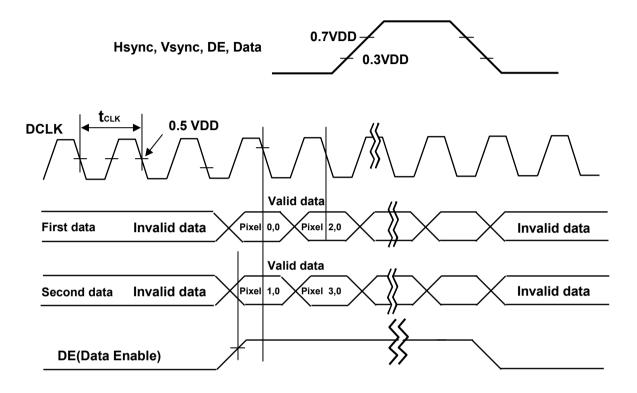
(JST : Japan Solderless Terminal Co.,Ltd.)

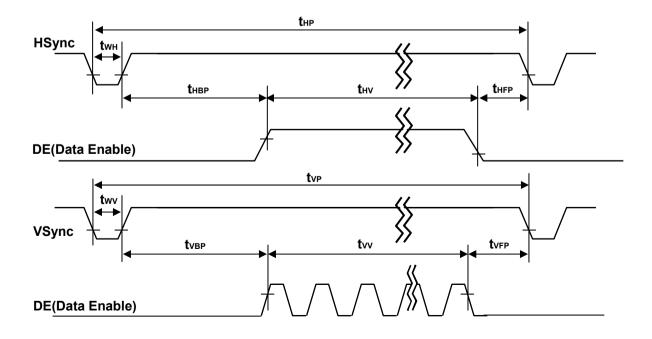
OV : Minimum Brightness.
 3.3V : Maximum Brightness.

3. On : 4.0~5.0V Off : -0.3~0.5V

3-3. Signal Timing Specifications

This is the signal timing required at the input of LVDS Transmitter. All of the interface signal timing should be satisfied with the following specification for it's proper operation.


Item	Symbol		Min	Тур	Max	Unit	Remark
DOLK	Period	tc∟ĸ	12.2	13.8	14.7	ns	
DCLK	Frequency	-	68	72	80	MHz	
	Period	tHP	1456	1526	1776	tclk	
Hsync	Frequency	fн	45	47.4	50	KHz	
	Width	twн	16	32	-	tclk	
	Period	t∨₽	775	790	1063	tHP	Note 1
Vsync	Frequency	f∨	47	60	63	Hz	PAL : 47~53Hz
	Width	tw∨	2	5	-	tHP	NTSC : 57~63Hz
	Horizontal Valid	tн∨	1366	1366	1366		
	Horizontal Back Porch	tнвр	40	80	-	1	
	Horizontal Front Porch	tHFP	24	48	-	tc∟ĸ	
DE	Horizontal Blank	-	80	160	tHP- tHV		
(Data Enable)	Vertical Valid	tvv	768	768	768		
	Vertical Back Porch	tvвр	4	15	-		
	Vertical Front Porch	tvfp	1	2	-	tHP	
	Vertical Blank	-	7	22	tvp- tvv		

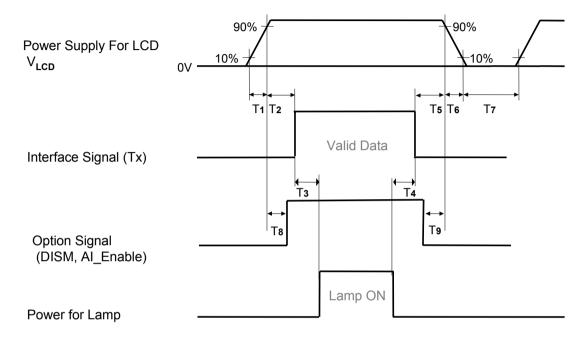

Table 8.	TIMING	
i able 0.		IADLL

- Note: Hsync Period and Hsync Width should be even number times of tCLK. If the value is odd number times of tCLK, display control signal can be asynchronous. In order to operate the LCD module, Hsync, Vsync and DE(data enable) signals should be used.
 - 1. <u>The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate.</u>
 - 2. Vsync and Hsync should be keep the above specification.
 - 3. Hsync Period, Hsync Width and Horizontal Back Porch should be any times of character number(8).

3-4. Signal Timing Waveforms

3-5. Color Data Reference

The brightness of each primary color(red,green,blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

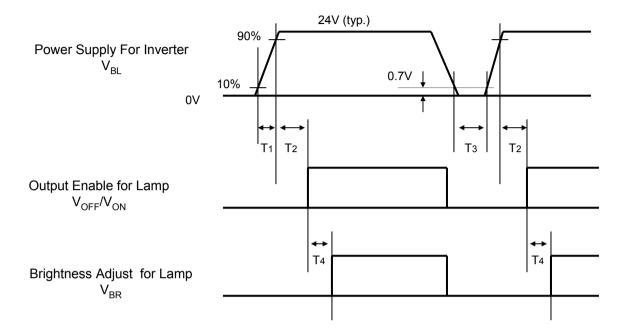

Table 9. COLOR DATA REFERENCE

													Inpu	it Co	olor	Data	a									
	Color		MS	SB		RE	Ð		15	SB	MS	B		GRE	EEN		1	SB	MS	B		BL	UE			.SB
					R5	R4	R3	R2	R1 F				G5	G4	G3	G2			-		B5	B4	В3	B2		
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																										
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																										
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																						-				
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

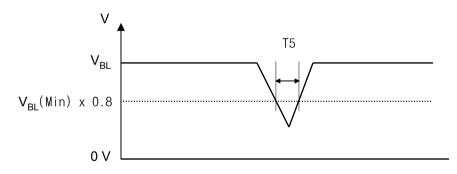
3-6. Power Sequence

3-6-1. LCD Driving Circuit

Table 10. POWER SEQUENCE FOR LCD DRIVING CIRCUIT


Devenester		Value								
Parameter	Min Typ		Max	Unit						
T1	0.5	-	10	ms						
T2	5	-	50	ms						
Т3	200	-	-	ms						
T4	200	-	-	ms						
Т5	0.5	-	50	ms						
Т6	-	-	100	ms						
Т7	1	-	-	S						
Т8		3 < T8 < T2								
Т9		ms								

Note : 1. Please avoid floating state of interface signal at invalid period.


- 2. When the interface signal is invalid, be sure to pull down the power supply V_{LCD} to 0V.
- 3. Lamp power must be turn on after interface signals are valid
- If the on time of option signal(DISM or AI_Enable) precedes the on time of Power(V_{LCD}), check the LCD logic Power(Vcc) is under 0.5V, otherwise it will be happened abnormal display...

3-6-2. ON/OFF for Inverter

3-6-3. Deep condition for Inverter

Table 11. POWER SEQUENCE FOR INVERTER

Deremeter		Value		Unit	Domark
Parameter	Min	Тур	Max	Unit	Remark
T1	20	-	-	ms	inverters connected condition
T2	500	-	-	ms	
Т3	200	-	-	ms	
T4	0	-	-	ms	
Т5	-	-	10	ms	V_{BL} (Min) x 0.8

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 120Min in a dark environment at $25\pm2^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °.

It is presented additional information concerning the measurement equipment and method in FIG.1.

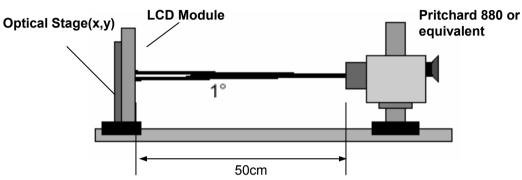


FIG.1 Optical Characteristic Measurement Equipment and Method

Ta= 25 \pm 2°C, V_{LCD}=12.0V, fv=60Hz, Dclk=72MHz, VBR=3.3V

	Deremet		Cumph of		Value		Unit	Nata
	Paramet	er	Symbol	Min	Тур	Max	Unit	Note
Contract			CR	400	550			
Contrast Ratio		CR with AI	800	1,100			1 1	
Surface Lu	uminance,	white	L _{WH}	400	500		cd/m ²	2
Luminanc	e Variation		δ _{WHITE} 5P			1.3		3
Response	Time	Rise Time	Tr _R	-	8	12		
(Gray-to-G		Decay Time	Tr _D	-	10	14	ms	4
		G to G (with ODC)		8	12		
		RED	Rx	ļ	0.639			
			Ry		0.340	Тур +0.03		
		GREEN	Gx]	0.284			
Color Coor	dinates		Gy	Тур	0.604			
[CIE1931]		BLUE	Bx	-0.03	0.145			
			Ву]	0.064			
		WHITE	Wx	1	0.281			
			Wy	1	0.293			
Viewing A	ngle (CR>1	10)						
	x axis, righ	nt(φ=0°)	θr	85	89	-		
-	x axis, left	(\$ =180°)	θI	85	89	-		_
y axis, up (φ=90°) y axis, down (φ=270°)		(= 90°)	θu	85	89	-	degree	5
		θd	85	89	-			
			Without AI					
Gray Scal	e		With AI					6

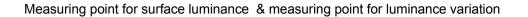
Note :

1. Contrast Ratio(CR) is defined mathematically as :

Contrast Ratio = $\frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$ It is measured at center 1-point.

- 2. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2.
- 3. The variation in surface luminance , δ WHITE is defined as :

 $\delta \text{ WHITE(5P)} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, L_{\text{on3}}, L_{\text{on4}}, L_{\text{on5}}) / \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, L_{\text{on3}}, L_{\text{on4}}, L_{\text{on5}})$


Where L_{on1} to L_{on5} are the luminance with all pixels displaying white at 5 locations . For more information, see the FIG. 2.

- 4. Response time is the time required for the display to transition from G(N) to G(M) (Rise Time, Tr_R) and from G(M) to G(N) (Decay Time, Tr_D). For additional information see the FIG. 3. (N<M)
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 4.
- Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 13.

Gray Level	Luminance [%] (Typ)	Luminance [%] (Typ) with AI
LO	0.19	0.1
L15	0.25	0.18
L31	0.7	0.6
L47	2.28	2.28
L63	4.58	4.46
L79	7.15	7.32
L95	10.82	10.90
L111	15.72	15.15
L127	21.93	19.73
L143	27.81	25.29
L159	34.94	32.95
L175	43.32	41.57
L191	53.12	51.34
L207	63.10	63.03
L223	74.51	74.71
L239	86.99	86.40
L255	100.00	100.00

Table 13. GRAY SCALE SPECIFICATION

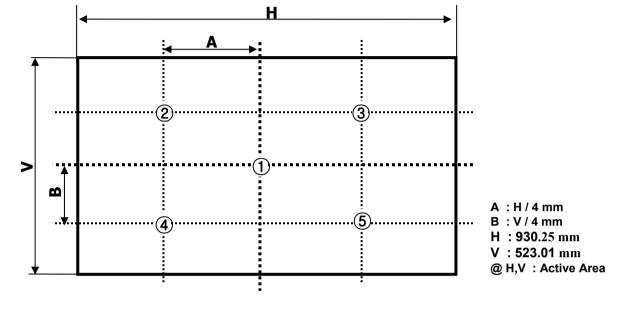
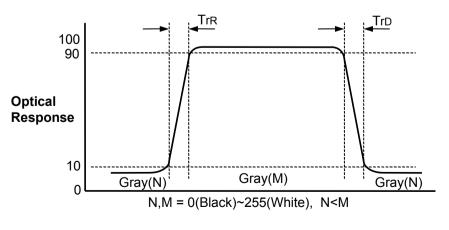



FIG.2 Measure Point for Luminance

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

FIG.3 Response Time

Dimension of viewing angle range

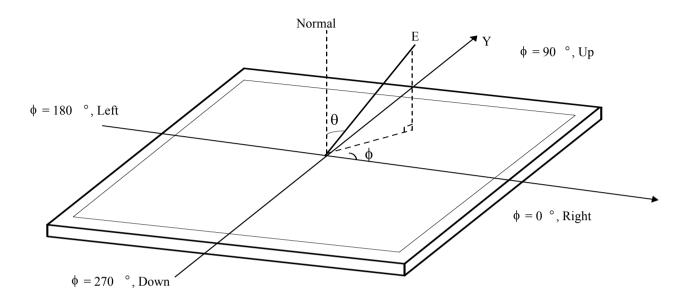
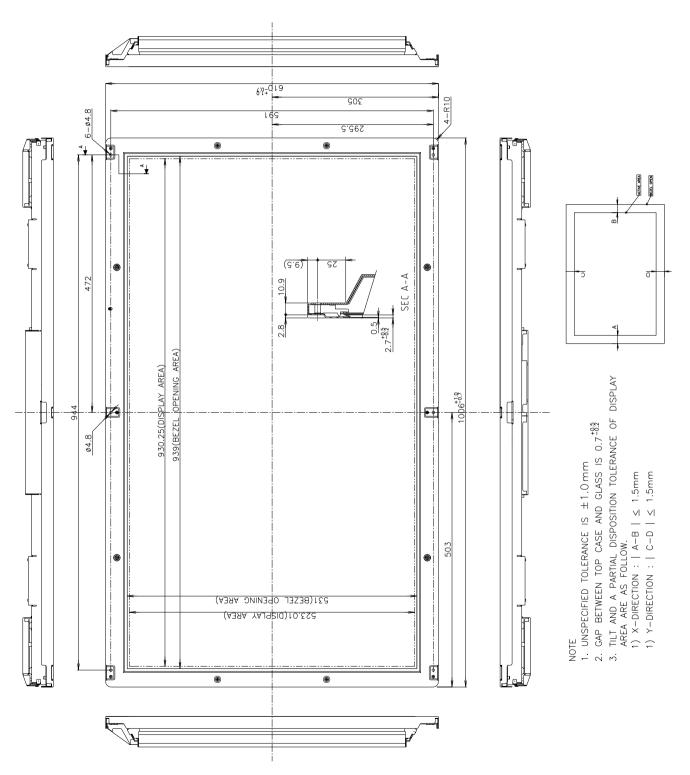


FIG.4 Viewing Angle

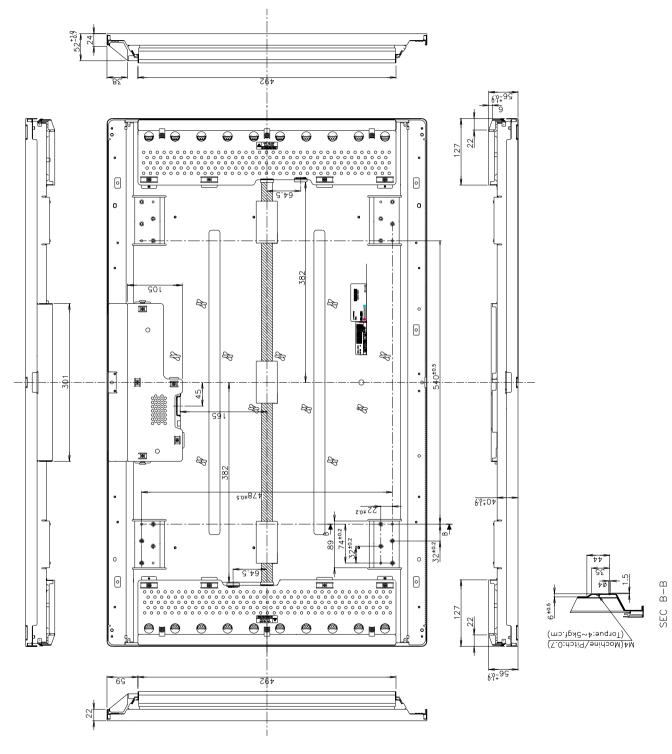
5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD module.


Table 14. MECHANICAL CHARACTERISTICS

Item	Value				
	Horizontal	1006.0 mm			
Outline Dimension	Vertical	610.0 mm			
	Depth	56.0 mm			
Derel Aree	Horizontal	939.0 mm			
Bezel Area	Vertical	531.0 mm			
Active Display Area	Horizontal	930.25 mm			
Active Display Area	Vertical	523.01 mm			
Weight	11,800g (Typ.) , 12,400g (Max.)				
Surface Treatment	Hard coating(3H) Anti-glare treatment of the front polarizer				

Note : 1.Please refer to a mechanic drawing in terms of tolerance at the next page.



<FRONT VIEW>

<FRONT VIEW>

6. Reliability

Table 15. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition				
1	High temperature storage test	Ta= 50°C 240h				
2	Low temperature storage test	Ta= -20°C 240h				
3	High temperature operation test	Ta= 40°C 50%RH 240h				
4	Low temperature operation test	Ta= 0°C 240h				
5	Vibration test (non-operating)	Wave form : random Vibration level : 1.0Grms Bandwidth : 10-500Hz Duration : X,Y,Z, 10 min One time each direction				
6	Shock test (non-operating)	Shock level : 100Grms Waveform : half sine wave, 2ms Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction				
7	Humidity condition Operation	Ta= 40 °C ,90%RH				
8	Altitude operating storage / shipment	0 - 14,000 feet(4267.2m) 0 - 40,000 feet(12192m)				

7. International Standards

7-1. Safety

a) UL 60950, Third Edition, Underwriters Laboratories, Inc., Dated Dec. 11, 2000.

Standard for Safety of Information Technology Equipment, Including Electrical Business Equipment. b) CAN/CSA C22.2. No. 60950. Third Edition. Canadian Standards Association. Dec. 1, 2000.

- Standard for Safety of Information Technology Equipment, Including Electrical Business Equipment. c) EN 60950 : 2000. Third Edition
- IEC 60950 : 1999, Third Edition IEC 60950 : 1999, Third Edition European Committee for Electrotechnical Standardization(CENELEC) EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH)

- E : MONTH
- G : ASSEMBLY CODE

D : YEAR F : FACTORY CODE H, I, J, K, L, M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	n	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark		1	2	3	4	5	6	7	8	9	А	В	С

3. FACTORY CODE

Factory Code	LPL Gumi	LPL Nanjing	HEESUNG
Mark	к	С	D

4. SERIAL NO.

Mark 100001~199999, 200001~299999, 300001~399999,, A00001~A99999,, Z00001~Z99999

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one box : 3 pcs
- b) Box Size : 1164mm X 497mm X 728mm

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.

Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)

- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}(\text{Over and under shoot voltage})$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes
- And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw.
 - (if not, it causes metallic foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD module on its edge.

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Warranty for Non-Inclusion of Hazardous Substances in Products (ver.4.1)

Our company hereby warrants and guarantees that all of or part of products. including, but not limited to, the peripherals, accessories or (including your subsidiaries and affiliated company) directly or packages, manufactured and/ or delivered to your company indirectly by our company (including our subsidiaries or affiliated companies) are free from any of the substances listed in your company's Technology Standard or its subsequent revision, including the following articles,

1. Our company actually cooperates with environment-friendly policy pushed by your company and follows the total abolition schedule of Pb, Cd, Cr+6, Hg, PBB and PBDEs proposed by Hazardous substances management standard in your company

2. Our company don't excessively enclose to the noxious material including Cd. Pb in products and parts supporting to the department of DID in LG electronics. If the environmental accident is occurred by our company's mistake and insufficient improvement, acts on our company's responsibility

3. Our company ensure that all of information submitted to your company is not arbitrary estimation and is to the exact document based on reliable data.

By attached Data, Our company warrants this products comfirm to following requirements. (Check each applicable item)

Pb Free Soldering Pb Free RoHS Free TCO '03

 Definition : Pb Free Soldering : Parts must meet DID's Heat resistance condition. (Reflow Type:250°C,10sec, Flow Type : 260°C,10sec) Pb Free : Lead wire plating is Pb Free(Pb content < 1,000ppm) and Inner contact point and Body itselt don't contain Pb(Pb content < 1,000ppm) RoHS Free : Part does not contain Pb,Cd,Cr+6,Hg,PBBs and PBDEs(Cd<100ppm,Others<1,000ppm) and supplier must submit evidences(ICP,AAS,UV-Vis,GC) certificated by authorised agency TCO '03 : Part meet TCO'03 and LG electronics requirement (Cd<5ppm, Pb<50ppm, Hg<2ppm, Cr+6,PBBs,PBDEs<100)
Company name : LG-philips LCD
Date : Jan. 11. 2027
Representative : Mun - Cheal Jeong
Signature :