INNOLUX DISPLAY CORPORATION LCD MODULE SPECIFICATION

Customer:

Model Name: AT035TN02 SPEC NO: AT035-01-TT-02 Date: March.31, 2004 Version: <u>1.0</u>

Preliminary Specification

Final Specification

For Customer's Acceptance

Approved by	Comment

Presented by	Reviewed by	Prepare by			
教徒文务	陳俊達	# 2 Alion			

InnoLux copyright 2003 All rights reserved, Copying forbidden. Innolux Display Corporation,

2F, No.16, Ke-Tung Road 3, Science-Based Industrial Park, Chu-Nan 350, Mao-Li County, Taiwan

Tel: 886-37-586000

Fax: 886-37-586060

Revisions Section

Revision	Description	Date
1	Initial Release	03/31 04

	SPEC NO. :		
	PAGE :	1/18	
Contents:			
1. General specification		2	2
2. Electrical specifications		1	2
(1). Absolute maximum ratings			
(2). Pin assignment			
(a). TFT LCD panel driving section			
(3). Electrical characteristics			
(a). Typical operating conditions			
(b). Current consumption			
(c). Backlight driving conditions			
(4). AC timing			
(a). Timing conditions			
(b). Timing diagram			
3. Optical specifications		1	1
4. Reliability test Items		1	4
5. Mechanical dimensions		1	5
6.Packing specifications		. 1	6

16

SPEC NO. : PAGE : 2/18

1. General specifications

NO.	Item	Specification	Remark
1	LCD size	3.5 inch	
2	Driver Element	a-Si TFT active matrix	
3	Display contents(dot)	480(W)X 234 (H)	
4	Display Mode	Normally white, Transmissive with Backlight	
5	Dot pitch	0.15(W) X 0.216(H) mm	
6	Active area	72(W) X 50.544(H) mm	
7	Module Size	82.8±0.3(W)x60±0.3(H)x6.0±0.3 (D)mm	
8	Color configuration	R.G.B delta	
9	Weight	37g±3g	

2. Electrical specifications

(1). Absolute maximum ratings

			Va	lues		
Item	Symbol	Condition	Min.	Max.	Unit	Remark
	DV_DD	GND=0	-0.3	7	V	
	AV_{DD}	AV _{SS} =0	-0.3	7	V	
Power voltage	V_{GH}		-0.3	18	V	
	V_{GL}	GND=0	-15	0.3	V	
	V_{GH} - V_{GL}	-	-	33	V	
	Vi	-	-0.3	AV _{DD} +0.3	V	Note 1
Input signal voltage	VI	-	-0.3	DV _{DD} +0.3	V	Note 2
	VCOM	-	-2.9	5.2	V	
Operation Temperature	Тор	-	0	60	°C	Ambient
Storage Temperature	Tst	-	-25	80	°C	Ambient

Note :

1. VR, VG, VB.

2. STHL, STHR, OEH, L/R, CPH1~CPH3, STVR, STVL, OEV, CKV, U/D, Q1H

 SPEC NO. :

 PAGE :
 3/18

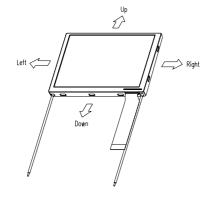
(2). Pin assignment

Pin no	Symbol	ю	Function	Remark
1	STHL	I/O	Start pulse for horizontal scan line	Note 1
2	OEH	Ι	Output enable control for data driver	
3	Q1H	Ι	Analog signal rotate input	
4	CPH1	Ι	Sampling and shifting clock pulse for data driver	
5	CPH2	Ι	Sampling and shifting clock pulse for data driver	
6	CPH3	Ι	Sampling and shifting clock pulse for data driver	
7	GND	Р	Ground	
8	VB	Ι	Alternated video signal (Blue)	
9	VG	Ι	Alternated video signal (Green)	
10	VR	Ι	Alternated video signal (Red)	
11	NC	-	This pin should be electrical opened during operation	
12	L/R	Ι	LEFT/RIGHT scan control input	Note 1,2
13	STHR	I/O	Start pulse for horizontal scan line	Note 1
14	AV_{DD}	Р	Supply voltage for analog circuit	
15	VCOM	Ι	Common electrode driving signal	
16	V_{GH}	Р	Positive power for scan driver	
17	DV_{DD}	Р	Supply voltage of logic control circuit for driver	
18	STVL	I/O	Start pulse for vertical scan frame	Note 1
19	OEV	Ι	Output enable control for scan driver	
20	CKV	Ι	Shift clock input for scan driver	
21	U/D	Ι	UP/DOWN scan control input	Note 1,2
22	STVR	I/O	Start pulse for vertical scan frame	Note 1
23	NC	-	This pin should be electrical opened during operation	
24	V_{GL}	Р	Negative power for scan driver	

SPEC NO. : PAGE :

4/18

Note:


1. Selection of scanning mode (please refer to the following table)

Setting of scan control input		IN/O	UT state	for start p	oulse	Scanning direction
U/D	L/R	STVR	STVL	STHR	STHL	
GND		0	I	0	I	Up to Down, Left to Right
DV_{DD}	GND	I	0	I	0	Down to Up, Right to Left
GND	GND	0	I	I	0	Up to Down, Right to Left
	DV_{DD}	I	0	0	I	Down to Up, Left to Right

I: input, O: output

2. Definition of Scanning Direction.

Refer to figure as below:

(3). Electrical characteristics

(a). Typical operating conditions (GND =0V, Note 4)

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Symbol		Values		Unit	Remark
ltem		Symbol	Min.	Тур.	Max.	Unit	Kellidik
		$DV_DD$	3	5	5.2	V	
		$AV_{DD}$	4.8	5	5.2	V	
Power s	upply	$V_{GH}$	14.3	15	15.7	V	
		$V_{GLAC}$	3.5	5	6.5	V	AC component of $V_{GL}$
		$V_{\text{GL-H}}$	-10.5	-10	-9.5	V	High level of $V_{\text{GL}}$
		$V_{iAM}$	0.4	-	$AV_{DD}$ -0.4	V	Note2
Video signal (VR, VG		$V_{iAC}$	-	3	-	V	AC component
	, ,	$V_{\text{iDC}}$	-	$AV_{DD}/2$	-	V	DC component
VCC	VCOM		3.5	5	6.5	V	Note3
VCOW		$V_{CDC}$	1.0	(1.25)	1.5	V	DC component
Input signal	H level	V _{IH}	$0.8 \text{ DV}_{\text{DD}}$	-		V	Note4
Voltage	L level	V _{IL}	0	-	$0.2 \text{ DV}_{\text{DD}}$	V	NULC4

SPEC NO. : PAGE : 5/18

Note:

- 1. The same phase and amplitude with common electrode driving signal (VCOM)
- 2. Refer to Fig.3-(a).
- 3. The brightness of LCD panel could be changed by adjusting the AC component of VCOM.
- 4. SRHL, STHR, OEH, L/R, CPH1~CPH3, STVR, STVL, OEV, CKV, U/D, Q1H
- 5. Be sure to apply GND,  $\mathrm{D}V_{\text{DD}},$  and  $V_{\text{GL}},$  to the LCD first, and then apply  $V_{\text{GH}}$
- 6. V_{CDC} should be provided an optimized voltage, so as to minimized flicker or maximum contrast every each module.

	Symbol (	Condition		Values		Remark		
Parameter			Min.	Тур.	Max.	Unit	Kennark	
Current for Driver	I _{GH}	V _{GH} =15V	-	100	300	uA	$V_{GH}$	
	$I_{GL}$	V _{GL-H} =-10V	-	-100	-300	uA	$V_{GL}$	
	I _{DD}	DV _{DD} =5V	-	1.5	4	mA		
	I _{AVDD}	AV _{DD} =5V	-	5	10	mA	AV _{DD}	

## (b). Current consumption (GND =0V)

#### (c). Backlight driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp voltage	VL	-	260	290	Vrms	Note 3
Lamp current	١ _L	2.5	2.9	3.3	mArms	
Frequency	FL	55	60	65	kHz	Note 3,4
Lamp starting	N	-	-	550	Vrms	Note 1,3,5
voltage	Vs	-	-	850	Vrms	Note 2,3,5

Note 1: Ta = 25℃

Note 2: Ta = 0°C

- Note 3: Reference value , correct value is subject to final backlight specification which will be decided in the future.
- Note 4: The lamp frequency should be selected as different as possible from display horizontal Synchronous signal to avoid interference.
- Note 5: For starting the backlight unit , the output voltage of DC/AC's transformer should be larger than the maximum lamp starting voltage.

### (4). AC timing

(a). Timing conditions (sequential mode)

		Values				Remark	
Item	Symbol	Min.	Тур.	Max.	Unit	Kennark	
Rising time	t _r	-	-	10	ns	Note 1	
Falling time	t _f	-	-	10	ns	Note 1	
High and low level pulse width	t _{CPH}	299	312	342	ns	CPH1~CPH3	
CPH pulse duty	t _{CWH}	40	50	60	%	CPH1~CPH3	

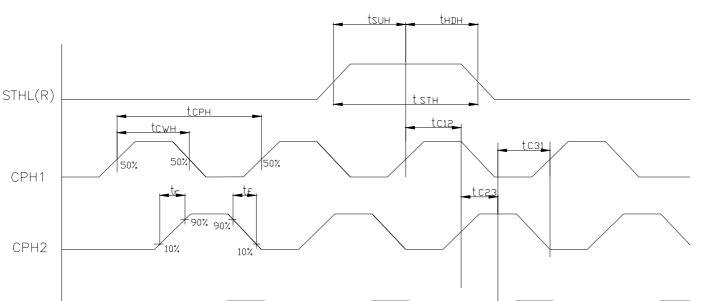
SPEC NO. :

PAGE :

6/18

CPH pulse delay	t _{C12} t _{C23} t _{C31}	70	t _{СРН} /З	t _{CPH} /2	ns	CPH1~CPH3
STH setup time	t _{sun}	35	-	-	ns	STHR, STHL
STH hold time	t _{HDH}	35	-	-	ns	STHR, STHL
STH pulse width	t _{stH}	-	1	-	t _{CPH}	STHR, STHL
STH period	t _H	61.5	63.5	65.5	$\mu$ S	STHR, STHL
OEH pulse width	t _{OEH}	-	3	-	t _{CPH}	
Sample and hold disable time	t _{DIS1}	-	8.42		$\mu$ S	
OEV pulse width	$\mathbf{t}_{OEV}$	-	13		t _{CPH}	
CKV pulse width	t _{скv}	16	20	40	t _{CPH}	
Clean enable time	t _{DIS2}	-	10		t _{CPH}	
Horizontal display start	t _{SH}	-	0	-	t _{CPH} /3	
Horizontal display timing range	t _{DH}	-	480	-	t _{CPH} /3	
STV setup time	t _{suv}	400	-	-	ns	STVL, STVR
STV hold time	$t_{HDV}$	400	-	-	ns	STVL, STVR
STV pulse width	t _{STV}	-	-	1	t _H	STVL, STVR
Horizontal lines per field	t _v	256	262	268	t _H	Note 2
Vertical display start	t _{sv}		3	-	t _H	
Vertical display timing range	t _{DV}		234	-	t _H	Note 3
VCOM rising time	t _{rCOM}		-	5	μs	
VCOM falling time	t _{fCOM}		-	5	$\mu$ S	
VCOM delay time	t _{DCOM}		-	3	$\mu$ S	
RGB delay time	t _{DRGB}		-	1	$\mu$ S	

Note :


1. For all of the logic signals

2. Please don't use odd horizontal lines to drive LCD panel for both odd and even field simultaneously.

3. Vertical total display lines.

(b). Timing diagram

SPEC NO. : PAGE :





CPH3

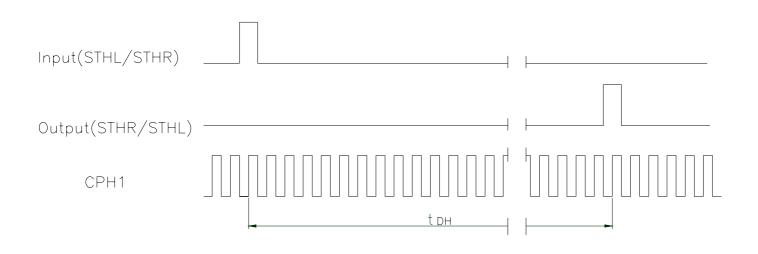



Fig.2 Horizontal isplay timing range

7/18

 SPEC NO. :

 PAGE :
 8/18

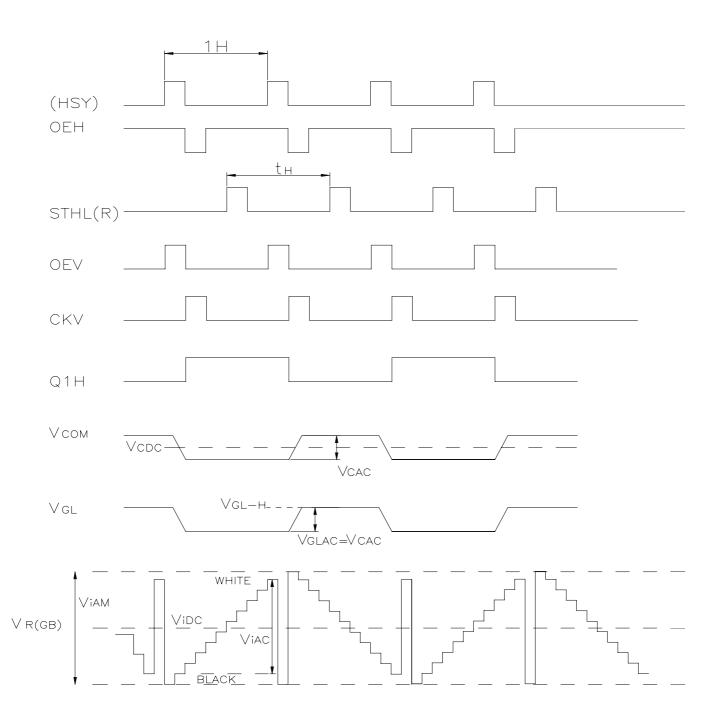
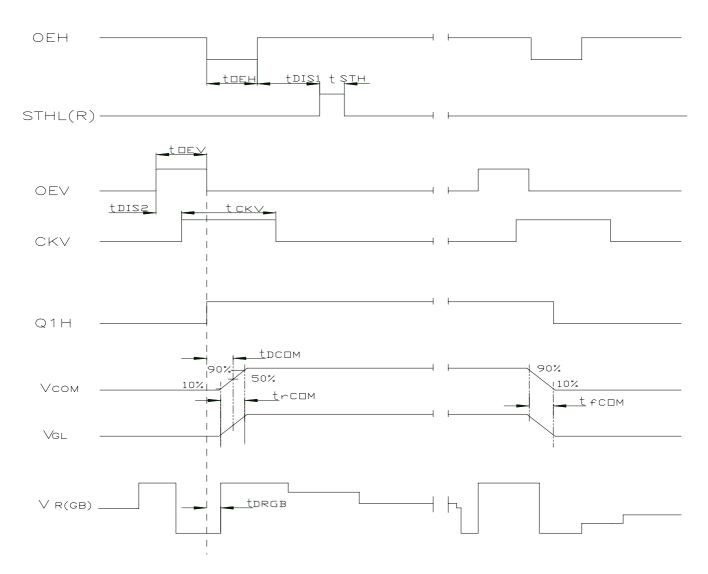




Fig.3-(a) Horizontal timing

SPEC NO. :

PAGE :

9/18



Note: The falling edge of OEV should be synchronized with the falling edge of OEH

Fig.3-(b) Detail horizontal timing

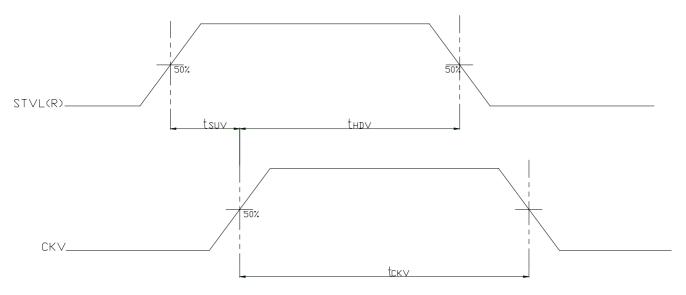
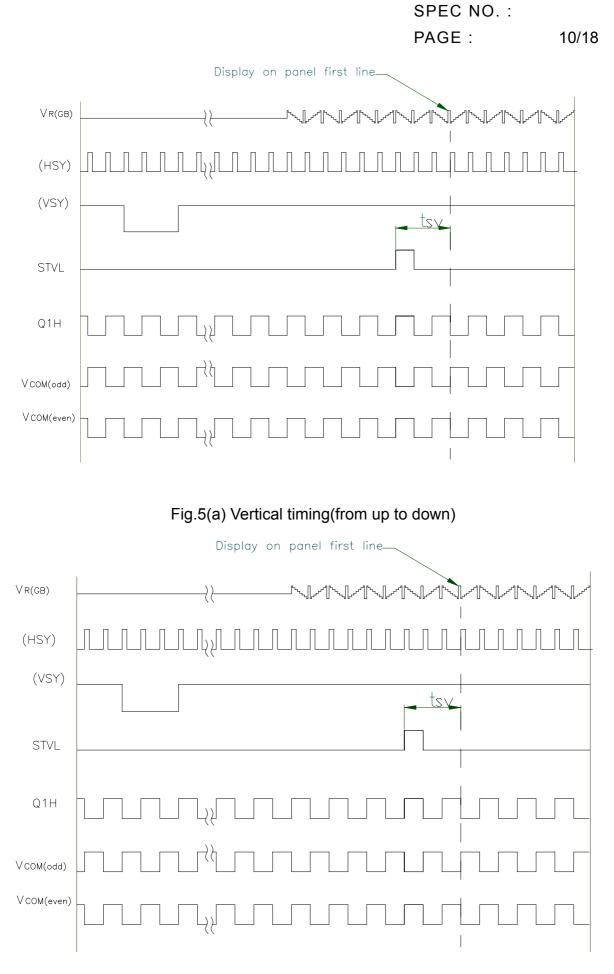
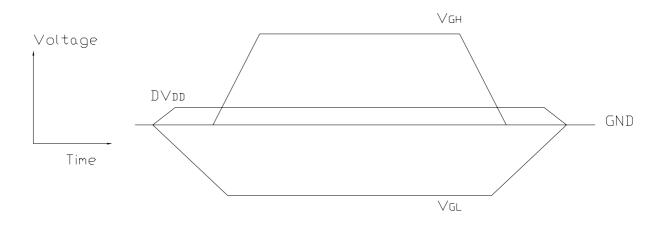




Fig.4 Vertical shift clock timing

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM INNOLUX DISPLAY CORPORATION.




# Fig.5(b) Vertical timing(from up to down)

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM INNOLUX DISPLAY CORPORATION.

SPEC NO. : PAGE : 11/18

#### (5) Power sequence

This module adopts high voltage driver IC, so it may be damaged by a large current flow if a wrong power on/off sequence is used! The recommend power sequence is to connect  $\mathrm{DV}_{\mathrm{DD}}$  first, then connect power to driver gate power, V_{GL} and V_{GH}. When shutting off the power, shut off the driver gate power, V_{GL} and V_{GH}, then shut off the logic power,  $\mathrm{DV}_{\mathrm{DD}}$ , or shut off the power simultaneously!



SPEC NO. : PAGE : 12/18

## 3. Optical specifications

Note 1, Note 2			Ta=25℃, I <mark>∟=2.9mArms</mark>					
Paramete	r	Symbol	Condition	Min	Тур	Max	Unit	Remarks
Response time	rise time	Tr	Normal	-	20	30	ms	Note 3, 5
	fall time	Tf	<b>θ=Φ=0</b> °	-	30	40	1115	NOLE 5, 5
Contrast ratio		CR	At optimized viewing angle	150	200	-		Note 4, 5
Luminance		L	Normal θ=Φ=0°	200	250	-	cd/m ²	Note 6, 8
Color chromaticity White		W _x	Normal	(0.26)	(0.31)	(0.36)		Noto 7 9
(CIE1931)	white	Wy	θ=Φ=0°	(0.28)	(0.33)	(0.38)		Note 7, 8
	Left θ _R			40	45	-		
Viewing angle	Right	$\theta_{L}$	CR≧10	40	45	-	degree	Note 5
range	Тор	Φτ		10	15	-		
	Bottom	Φ _B		30	35	-		

Note 1: Definition of viewing angle range

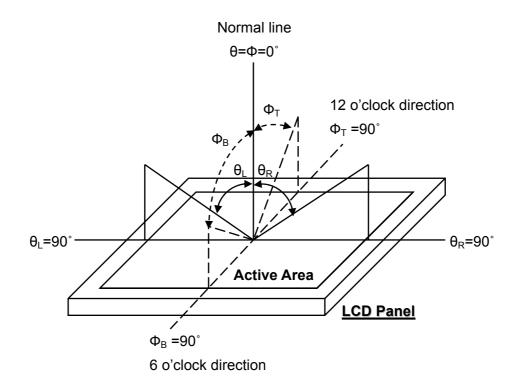



Fig. 3-1 Definition of viewing angle

Note 2: Definition of optical measurement system

The optical characteristics should be measured in dark room and with ambient temperature Ta= $25^{\circ}$ C. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen.

Equipment: Photo detector TOPCON BM-5A or BM-7 /Field of view: 1° /Height: 500mm.

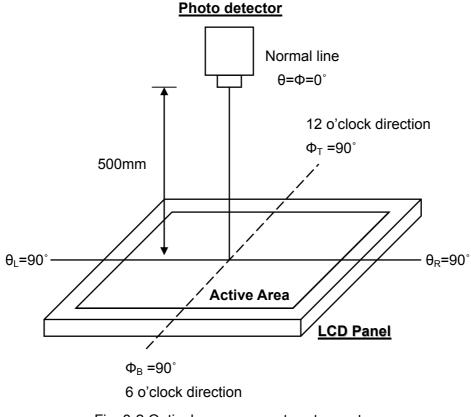



Fig. 3-2 Optical measurement system setup

#### Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%.

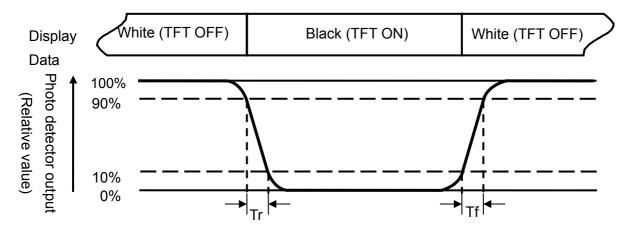



Fig. 3-3 Definition of response time

Note 4: Definition of contrast ratio The contrast ratio is defined as the following expression. Contrast ratio (CR) =  $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$ 

Note 5: White Vi = V_{i50}± 1.5V Black Vi = V_{i50}± 2.0V
"±" means that the analog input signal swings in phase with VCOM signal.
"±" means that the analog input signal swings out of phase with VCOM signal. The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

- Note 6: Definition of luminance Luminance of "White" state measured at the center point of LCD.
- Note 7: Definition of color chromaticity (CIE1931) Color coordinates measured at the center point of LCD.
- Note 8: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

SPEC NO. : PAGE : 15/18

### 4. Reliability test items

(1). Reliability levels in mass production are as below:

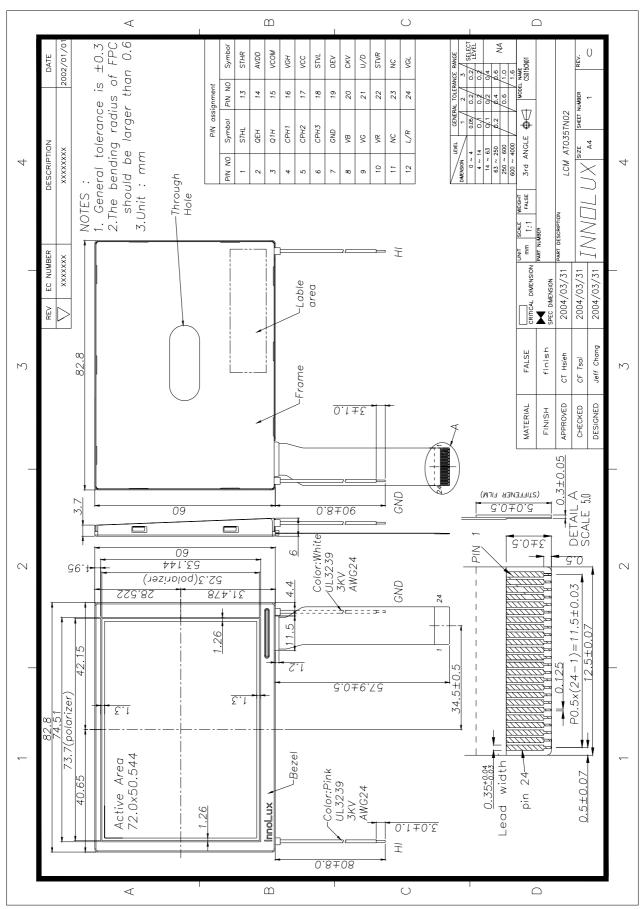
	_	
Test Items	Test Conditions	Remark
High temperature storage	+80℃±3℃, Dry(30%RH max.) for 240 hours	
Low temperature storage	-25 $^{\circ}$ C ±3 $^{\circ}$ C for 240 hours	
High temperature operation	+60℃±3℃, Dry(30%RH max.) for 240 hours	
Low temperature operation	0°C±3°C for 240 hours	
Operation at high temperature and humidity	+50℃±3℃,80%±3%RH max. for 240 hours	Note 3
Thermal shock	-25°C/1h ~ +80°C/1h for a total 50 cycles, Start with cold temp and end with high temp	Not Operation
Vibration test	Frequency range:10~55Hz Stoke:1.5m Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X. Y. Z. (6 hours for total)	JIS C7021 A-10 Condition A
Vibration Test (with carton)	Random Vibration : 0.015G*G/Hz from 5-200HZ, -6Db/Octave from 200-500HZ	IEC 68-36
Drop Test (with carton)	Height:60 cm 1 corner, 3 edges, 6 surfaces	JIS Z0202
Pressure Test of panel surface	8KGf, 1mm, Φ5mm in center and four corners of panel	
Mechanical Shock	100G 6ms,±X, ±Y, ±Z 3 times for each direction	JIS C7021 A-7 Condition C

Note 1: High temp storage & High temp/High humidity Op the polarizer is out of subject Note 2: the test sample has recovery time 2 hours at room temp before function check Note 3: The display is in the Op test Item should be in the autorun mode

#### (2). Criteria:

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

#### (3). Electro Static Discharge


Parameter	Symbol	Values	unit	Remark
Electro-static discharge V _{ESD}		±2K	V	Human Body Mode, 100pF/1500Ω
	±200	V	Machine Mode 200pF/0Ω	

SPEC NO. :

PAGE :

16/18

### 5. Mechanical dimensions

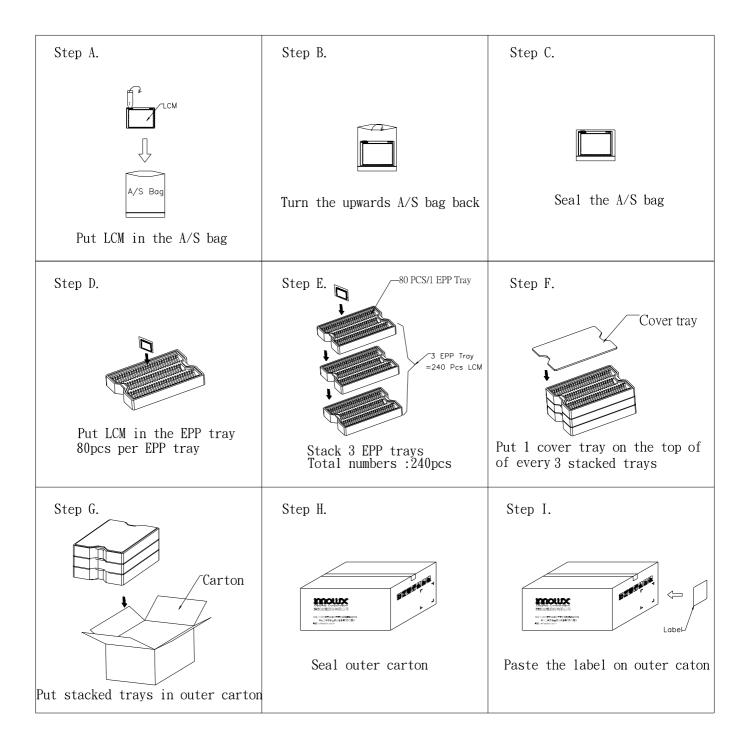


ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PRPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM INNOLUX DISPLAY CORPORATION.

## 6. Packing specifications

#### (1). Packaging material table

Per carton


No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	AT035TN02	82.8×60×6.0	0.037	240	
2	EPP tray	EPP	516x384x6.5	0.142	3	Anti-static
3	Cover tray	EPE	493×326×10	0.024	1	Anti-static
4	Anti-Static Bag	PE	100×80×0.05	0.001	240	Anti-static
5	Carton	Carton	530x355x255	1.1	1	
5	Total weight	11 Kg ± 0.6Kg	l			

# (2). Packaging quantity

(1) LCM quantity per tray: no. of the row	2 row X 28column +1row X 24column =80				
(2) Total LCM quantity in Carton: no. of EPP trays	3 x quantity per tray 80= 240				

SPEC NO. : PAGE : 18/18

## (3).Packing Drawing

